NC State
BioResources
  • Researchpp 1055-1071Sun, Y.-C., Lin, Z., Peng, W.-X., Yuan, T.-Q., Xu, F., Wu, Y.-Q., Yang, J., Wang, Y.-S., and Sun, R.-C. (2014). "Chemical changes of raw materials and manufactured binderless boards during hot pressing: Lignin isolation and characterization," BioRes. 9(1), 1055-1071.AbstractArticlePDF

    Thermomechanical pulp (TMP) is used for fiber production in binderless boards industries. Milled wood lignin (MWL) and enzymatic mild acidolysis lignin (EMAL) isolated from raw material and from binderless boards (BB) were comparatively analyzed to investigate the effects of chemical changes on the bonding performance in BB. The results showed that acid-insoluble lignin of the BB were increased during the sodium silicate solution pretreatment after hot-pressing. The lignin fractions obtained were characterized by gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) spectroscopy, and m coherence (HSQC) nuclear magnetic resonance (NMR) spectroscop y. Results showed that 31.1% of EMAL (based on Klason lignin) with low molecular weight (Mw=1630 g/mol) was isolated from the BB. The increased total phenolic OH groups (3.97 mmol/g) of EMAL from sodium silicate solution pretreated BB indicated that there was degradation of lignin and cleavage of lignin-carbohydrate linkages during hot-pressing. In addition, the content of of EMAL from the BB increased to 69.2%, which was higher than that of the untreated sample (60.1%). It was found that S units (syringyl-like lignin structures) were preferentially condensed by hot pressing over G (guaiacyl-like lignin structures) units, and the S/G ratio increased after the hot-pressing process.

  • Researchpp 1072-1084Lee, K. C., Arai, T., Ibrahim, D., Kosugi, A., Prawitwong, P., Lan, D., Murata, Y., and Mori, Y. (2014). "Purification and characterization of a thermostable laminarinase from Penicillium rolfsii c3-2(1) IBRL," BioRes. 9(1), 1072-1084.AbstractArticlePDF

    A laminarinase (endo-β-1,3-glucanase) was purified to homogeneity from Penicillium rolfsii c3-2(1) IBRL, which was originally produced in liquid culture containing 1% xylan from birchwood, via anion-exchange chromatography, gel filtration on Sephacryl S-100, and hydrophobic interaction chromatography. A single protein band with a molecular weight of 75 kDa was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which had an optimum catalytic activity at pH 4.0 to 5.0 and 70 °C. This purified enzyme was most stable in the pH range 4 to 7, while it was thermostable up to 55 °C and retained up to 90% of its activity after 4 h pre-incubation. A substrate laminarin kinetic study yielded estimated Km and Vmax values of 0.0817 mg/mL and 372.2 µmol/min/mg, respectively. Laminari-oligosaccharide degradation, which was analyzed by thin layer chromatography, yielded the major hydrolysis products laminaribiose and glucose.

  • Researchpp 1085-1096Yang, F., Fei, B., Wu, Z., Peng, L., and Yu, Y. (2014). "Selected properties of corrugated particleboards made from bamboo waste (Phyllostachys edulis) laminated with medium-density fiberboard panels," BioRes. 9(1), 1085-1096.AbstractArticlePDF

    This product could be manufactured anywhere in the world where the bamboo industry develops. The selected mechanical and physical properties of CBP were prepared with urea formaldehyde resin at three press temperatures and two density levels and were evaluated. The results showed that the performance of CBPs is highly dependent upon the board density. The static bending strength of CBP laminated with MDF initially increases, and then decreases with increasing press temperature. Increasing the magnitude of the press temperature has a slightly positive effect on the thickness swelling and water absorption. Compared with the excellent mechanical strength of CBP (laminated with MDF), the thickness swelling value of this bamboo-based particleboard without any waterproofing treatment was lower than the minimal requirement of the EN standard.

  • Researchpp 1097-1110Yoshihara, H. (2014). "Plasticity analysis of the strain in the tangential direction of solid wood subjected to compression load in the longitudinal direction," BioRes. 9(1), 1097-1110.AbstractArticlePDF

    Uniaxial compression tests in the grain (longitudinal) direction of solid wood were conducted using specimens of Sitka spruce and Japanese birch. The nonlinear stress-strain behavior was analyzed using plasticity theory, which is typically applied to ductile materials such as metals. The relationship between the longitudinal and tangential directions obtained from the experimental results showed nonlinearity, as predicted based on plasticity theory. Nevertheless, it was more pronounced in the experimental results than in the plasticity analysis.

  • Researchpp 1111-1120Wang, G., and Jing, Y. (2014). "Synthesis and application of a cationic polyacrylamide dry strength agent with anionic content," BioRes. 9(1), 1111-1120.AbstractArticlePDF

    A new net-cationic polyacrylamide dry strength agent was synthesized through free radical polymerization using acrylamide (AM), itaconic acid (IA), N,N-dimethylacrylamide (F), and sodium methallyl sulfonate (T). Ethylene diamine tetraacetic acid was used as a chelating agent; dimethylaminoethyl methacrylate methyl chloride (DMC) solution was used as a cationic monomer, and ammonium persulfate (APS) was used as an initiator. Orthogonal design and single-factor experiments were utilized to study the effect of many factors, such as reaction time, the ratio of monomers, and the dosage of APS and DMC on the cationic polyacrylamide. The synthesized products were characterized by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), particle charge detector (PCD), and zeta potential analysis. The results showed that the optimum conditions were as follows: optimal monomer proportion: m(AM):m(IA):m(T):m(F) = 23.79:2.39:0.21:0.32; w (DMC) = 28%; w (APS) = 1.0%, reaction time was 3 hours, reaction temperature was 93 °C, stirring speed was 130 rpm, and reaction pH value was 3.0. The solid content of the polymer was 21.2%. By adding the cationic polyacrylamide to old corrugated container pulp, the tensile index increased by 29.7% and the burst index increased by 66.1%, displaying the obvious enhancement of the paper.

  • Researchpp 1121-1131Xiao, H., Zhao, G.-L., Li, J.-R., and He, B.-H. (2014). "Hydrophobically associating polyethylenimine for controlling dissolved and colloidal substances of alkaline peroxide mechanical pulp," BioRes. 9(1), 1121-1131.AbstractArticlePDF

    In a paper mill’s water circuit, normal runnability of the paper machine is often disturbed due to buildup of hydrophobic dissolved and colloidal substances (DCS), such as wood pitch, white pitch, and stickies. General cationic fixing agents such as hydrophilic polymers do not always work to minimize these problems. In the present study, two kinds of novel hydrophobically associating polyethylenimine (PEI) coagulants grafted by acetic anhydride and 1,2-epoxydodecane, named PEI-Ac and PEI-Ed, respectively, were synthesized to remove hydrophobic DCS. The performances of the modified PEI samples were evaluated using a model suspension containing alkaline peroxide mechanical pulp (APMP) and styrene-butadiene latex. The results showed that the modified PEI was more inclined to interact with hydrophobic substances than was non-modified PEI. The relationship between DCS removal and non-modified or modified PEI content was not linear, but there was a maximum. The turbidity and particle counts of model suspensions decreased 30% and 80%, respectively, when the dosage of PEI-Ed(a) was 0.025%. Compared with the 72.8% decrease in the case of non-modified PEI, cationic demand decreased by 67.7% when the PEI-Ed(a) concentration was 0.2%. It was also found that PEI-Ed had a better affinity for DCS than PEI-Ac, which may be because the PEI-Ed had a long hydrophobic chain.

  • Researchpp 1132-1147Romagnoli, M., Cavalli, D., and Spina, S. (2014). "Wood quality of chestnut: Relationship between ring width, specific gravity, and physical and mechanical properties," BioRes. 9(1), 1132-1147.AbstractArticlePDF

    This article investigates the relationships between ring width (expressed as ring width class) and cambial age (expressed as chronological class) with specific gravity, modulus of rupture (MOR), compressive strength, and shrinkage. On those stands located on volcanic soils, it was found that when moving from the first ring width class (≤2 mm) to the seventh class (≥7 mm), a total decrease in specific gravity of 12.7% was observed, accompanied by a 19.5% decrease in compressive strength and a 22.8% decrease in MOR. With an increase in tree age, as expressed by the chronological class, there was a general decrease in the values of specific gravity, MOR, and compressive strength. It was therefore determined that chronological class is related to ring width, while specific gravity can predict MOR and compressive strength values for trees grown at volcanic sites. The results for a stand grown on calcareous soils showed a different trend. Furthermore, it was confirmed by cross-variance analysis that there was a correlation between ring width and chronological class.

  • Researchpp 1148-1158Chen, F., and Wu, H. (2014). "Water-resistant material from recovered fibers and acrylic emulsion terpolymer," BioRes. 9(1), 1148-1158.AbstractArticlePDF

    a polyacrylic emulsion by core-shell emulsion polymerization. The solid content of the emulsion reached 40% using reasonable reactive emulsifier contents and feeding modes. Then, the emulsion and a fiber were dispersed, coated, and dried together. Finally, fiber-based water-resistant material was successfully fabricated. The experimental results showed that under the conditions of a monomer mass ratio of 1:1:1 and a mass ratio of polyacrylic emulsion to fiber of 2:1, the Cobb value of the material reached 5.0 g/m2. The tensile strength, elongation, and breaking length were 7.4225 kN/m, 1.0%, and 11.706 km, respectively. Using scanning electron microscopy (SEM) to analyze the surface morphology and internal structure of products, the reasons for the high water resistance of fiber-based material was due to the bonding and filling effects of the polyacrylic emulsion on the fibers. For tightly bound fibers, the porous structures formed in fiber-based boards were reduced. On the other hand, the polyacrylic emulsion filled the gaps between fibers. This filling effect led to a continuous structure, and the water resistance of the material was further enhanced.

  • Researchpp 1159-1167Sumardi, I., and Suzuki, S. (2014). "Dimensional stability and mechanical properties of strandboard made from bamboo," BioRes. 9(1), 1159-1167.AbstractArticlePDF

    Dimensional changes in bamboo strandboard could decrease the bond durability, causing problems for structural materials. Thus, it is critical and of practical importance to study the relationship between thickness swelling (TS) and internal bond (IB) strength loss on bamboo strandboard. To determine the relationship between dimensional stability and bond durability of bamboo strandboard, various densities and board types were examined. The results show that board density and board types affected TS and water absorption (WA). The board with lower density was easier to swell than that of higher density. The board density influenced the TS/WA ratio for short-term water soaking, but not for long-term water soaking. For layer-structured board, the TS/WA ratio of randomly oriented homogenous board (RAND board) was slightly higher than that of uni-directionally oriented homogenous (UNID), three-layered oriented strandboard with cross-oriented core layer (3LYC), and three-layered oriented with random core (3LYR) boards. The maximum swelling can only be reached by high-temperature water soaking. The IB strength loss of UNID board was higher than that of RAND board.

  • Researchpp 1168-1178Salminen, L. I., Liukkonen, S., and Alava, M. J. (2014). "Ground wood fiber length distributions," BioRes. 9(1), 1168-1178.AbstractArticlePDF

    This study considers ground wood fiber length distributions arising from pilot grindings. The empirical fiber length distributions appear to be independent of wood fiber length as well as feeding velocity. In terms of mathematics the fiber fragment distributions of ground wood pulp combine an exponential distribution for high-length fragments and a power-law distribution for smaller lengths. This implies that the fiber length distribution is influenced by the stone surface. A fragmentation-based model is presented that allows reproduction of the empirical results.

@BioResJournal

54 years ago

Read More