NC State
BioResources
  • Researchpp 3184-3196Kong, W., Ren, J., Wang, S., and Chen, Q. (2014). "Removal of heavy metals from aqueous solutions using acrylic-modified sugarcane bagasse-based adsorbents: Equilibrium and kinetic studies," BioRes. 9(2), 3184-3196.AbstractArticlePDF

    Recently, more and more attention has been centered on developing cheaper, highly efficient, environmentally friendly adsorbents for the removal of metal ions from industrial effluents. The present work deals with the removal of metal ions from an aqueous solution using a highly efficient, biodegradable adsorbent from hydrogel prepared by the free radical graft polymerization of sugarcane bagasse with acrylic acid and acrylamide using N, N-methylene-bis-acrylamide as a crosslinker. FTIR and SEM/EDX spectroscopies were used to characterize the structure and the morphology of adsorbent before and after the metal ions adsorption. The effects of pH, contact time, and initial concentration of metal ion on the adsorption capacity were studied. The adsorption equilibrium time of Pb2+, Cd2+, and Cu2+ were 60, 90, and 180 min, respectively. The maximum adsorption capacities of Cu2+, Pb2+, and Cd2+ were 268, 700, and 320 mg/g, respectively. The adsorption data were fit to often-used models for adsorption kinetics and isotherms. It was determined that the experimental results were well fitted to the pseudo-second-order equation and Langmuir adsorption isotherms.

  • Researchpp 3197-3210Gawron, J., Antczak, A., Borysiak, S., Zawadzki, J., and Kupczyk, A. (2014). "The study of glucose and xylose content by acid hydrolysis of ash wood (Fraxinus excelsior L.) after thermal modification in nitrogen by HPLC method," BioRes. 9(2), 3197-3210.AbstractArticlePDF

    This study aimed to determine glucose and xylose content by acid hydrolysis of wood samples, both unmodified and thermally modified (modification time was 2, 6, 10 hours), using high performance liquid chromatography. Optimization of the hydrolysis process on the native ash wood samples showed that 3 h was the best time in the hydrolysis process. After that time, 58.8% of glucose and 20.8% of xylose were obtained. In turn, chromatographic analysis showed incomplete hydrolysis of ash wood samples, which were modified in a nitrogen atmosphere, especially at shorter times (2 and 6 h) of modification. With longer modification times (10 h), the hydrolysis of ash wood samples was completed. The above mentioned problem was caused mainly by the increase of cellulose crystallinity degree. The decrease of this parameter was observed only after 10 h of thermal modification, which would facilitate the process of acidic hydrolysis. Additionally, it was observed that the thermal modification of ash wood at 190 °C in a nitrogen atmosphere for 10 h caused a drastic decrease in the xylose content (from 20.8% to 8.0%) and only a slight decrease in the glucose content (from 58.8% to 54.9%).

  • Researchpp 3211-3224Wang, X., Sun, H., Bai, H., and Zhang, L.-P. (2014). "Thermal, mechanical, and degradation properties of nanocomposites prepared using lignin-cellulose nanofibers and poly(lactic acid)," BioRes. 9(2), 3211-3224.AbstractArticlePDF

    A variety of nanocomposites were prepared using lignin-cellulose nanofibers (L-CNF) and poly(lactic acid) (PLA) via a solvent casting process. Acid hydrolysis and high-pressure homogenization processes were used to produce L-CNF from unbleached kraft pulps. Tensile tests were conducted on thin films, and the nanocomposites containing 3 wt. % L-CNF showed a 32.4% increase in tensile strength compared to that of neat PLA. Dynamic mechanical analysis showed that the tensile storage modulus increased in the viscoelastic temperature region with increasing L-CNF content in the nanocomposites. Thermogravimetric analysis (TGA) showed that all the materials investigated were thermally stable from 25 to 310 ºC. Differential scanning calorimetry (DSC) showed a decrease in the cold crystallization temperature. A positive effect on the crystallization of PLA polymers in the nanocomposites with added L-CNF was observed using DSC and X-ray diffraction (XRD) analysis. The degradation profiles and swelling ratios of the nanocomposites improved.

  • Researchpp 3225-3235Wang, L., Zhang, Y., Chen, H., Xia, X., Liu, Z., and Hu, Z. (2014). "Effect of fixing agent dosage on the mechanism of colloidal substances retention onto pulp," BioRes. 9(2), 3225-3235.AbstractArticlePDF

    Three polyamine fixing agents with increasing molecular weights (m.w.), PA-Lw, PA-Mw, and PA-Hw, were used to treat a deinked pulp at three different levels of chemical dosage. The objective was to elucidate whether the retention mechanism of colloidal substances (CS) onto fibers by a fixing agent is different when the dosage is different. The results show that, for the polyamine with the lowest molecular weight (PA-Lw), it performed in the colloidal fixation mode over a wide range of dosage, but re-dispersion of CS took place in the pulp when its dosage was increased to a level high enough but still beneath the charge reversal point. For the polyamine with the highest m.w. (PA-Hw), CS re-dispersion was not observed over the whole dosage range, but a small part of the colloidal agglomeration coexisted with colloidal fixation even when the dosage was very low. For the polyamine with the middle m.w. (PA-Mw), both CS re-dispersion and colloidal agglomeration were observed. This study showed that if one wants to determine the dosage of a fixing agent during CS control better, both CS removal ratio and CS agglomeration behavior should be considered.

  • Researchpp 3236-3247Meng, X., Geng, W., Ren, H., Jin, Y., Chang, H.-M., and Jameel, H. (2014). "Enhancement of enzymatic saccharification of poplar by green liquor pretreatment," BioRes. 9(2), 3236-3247.AbstractArticlePDF

    Green liquor (Na2S + Na2CO3, GL) pretreatment is an effective pathway for improving the enzymatic digestibility of lignocellulosic biomass for the production of bioethanol. In this work, GL was employed as a pretreatment to enhance the enzymatic saccharification of poplar. During pretreatment, the increase of H-factor and TTA charge resulted in enhanced delignification and increased degradation of polysaccharides. The sugar yield of enzymatic hydrolysis increased rapidly with increasing TTA charge in GL pretreatment, while the effect of different H-factors (from 400 to 800) on sugar yield was unnoticeable. The pretreated solid recovery was 75.5% at a lignin removal rate of 29.2% under optimized conditions of total titratable alkali (TTA) charge 20%, sulfidity 25%, and H-factor 400. The sugar yield of glucan, xylan, and total sugar of GL-pretreated poplar in enzymatic hydrolysis reached up to 89.9%, 65.5%, and 82.8%, respectively, at a cellulase loading of 40 FPU/g-cellulose.

  • Researchpp 3248-3263Feng, H., Li, G., Fu, S., and Wang, X. (2014). "Tomographic image reconstruction using an interpolation method for tree decay detection," BioRes. 9(2), 3248-3263.AbstractArticlePDF

    Stress wave velocity has been traditionally regarded as an indicator of the extent of damage inside wood. This paper aimed to detect internal decay of urban trees through reconstructing tomographic image of the cross section of a tree trunk. A grid model covering the cross section area of a tree trunk was defined with some assumptions. Stress wave data were processed beforehand to obtain the propagation velocity and the coordinate values. An image reconstruction algorithm for detecting internal decay was proposed based on an interpolation method, which estimated the velocity values of unknown grid points by utilizing the values of the surrounding points. To test the effectiveness of this method, Cinnamomum camphora tree samples were selected and tested using a stress wave tool. The area, positions, and extent of decay in the representative samples were displayed in tomographic images constructed by the interpolation method, and the results demonstrate the performance of the method.

  • Researchpp 3264-3275Shen, Y., Sun, J., Wang, B., Xu, F., and Sun, R. (2014). "Catalytic synthesis of diphenolic acid from levulinic acid over Bronsted acidic ionic liquids," BioRes. 9(2), 3264-3275.AbstractArticlePDF

    SO3H-based acidic ionic liquids were used as Brønsted acid catalysts for synthesis of diphenolic acid (DPA) from the condensation of phenol and levulinic acid, a platform chemical from renewable materials. Evidence is presented that the product with p,p’– and o,p’-isomers was obtained. Under the optimal conditions, the 93.2 mol% yield of DPA and close to 100% selectivity to p,p’-DPA were achieved in a process promoted by [BSMim]HSO4. The favorable results can be attributed to the special structures of ionic liquids and thiol compound involvement. Furthermore, a mechanism of condensation promoted by acidic ionic liquid with ethanethiol is proposed.

  • Researchpp 3276-3289Cobut, A., Sehaqui, H., and Berglund, L. A. (2014). "Cellulose nanocomposites by melt compounding of TEMPO-treated wood fibers in thermoplastic starch matrix," BioRes. 9(2), 3276-3289.AbstractArticlePDF

    To facilitate melt compounding of cellulose nanofibrils (CNF) based composites, wood pulp fibers were subjected to a chemical treatment whereby the fibers were oxidized using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO). This treatment introduced negatively charged carboxylate groups to the fibers. TEMPO-treated fibers (TempoF) were added to a mixture of amylopectin starch, glycerol, and water. Granules were prepared from this mixture and processed into CNF composites by extrusion. TempoF were easier to process into composites as compared with non-treated pulp fibers (PF). SEM revealed partial disintegration of TempoF during melt processing. Consequently, TempoF gave composites with much better mechanical properties than those of conventional composites prepared from pulp fibers and TPS. Particularly, at 20 wt% TempoF content in the composite, the modulus and strength were much improved. Such a continuous melt processing route, as an alternative to laboratory solvent casting techniques, may promote large-scale production of CNF-based composites as an environmentally friendly alternative to synthetic plastics/composites.

  • Researchpp 3290-3303Ren, J., Kong, W., and Sun, R. (2014). "Preparation of sugarcane bagasse/poly(acrylic acid co-acrylamide) hydrogels and their application," BioRes. 9(2), 3290-3303.AbstractArticlePDF

    In this work, sugarcane bagasse, being an abundant and renewable resource, was used as a raw material to prepare sugarcane bagasse-g-poly(acrylic acid-co-acrylamide) (SB/P(AA-co-AM)) hydrogels. The hydrogels were prepared by free radical graft copolymerization of SB with AA and AM using N,N-methylene-bis-acrylamide (MBA) as a crosslinker. The optimal synthesis conditions were determined by investigating the water absorbency of the hydrogels. The maximum water absorbency reached 269 g/g in deionized water, and the corresponding copper ions adsorption capacity was 265 mg/g. These grafted hydrogels showed a pH-sensitive swelling behavior. Furthermore, they also exhibited excellent water retention capacity, which reserved 92.7%, 81.7%, and 76.8% for 44 h, and 83.7%, 58.6%, and 47.1% for 116 h at 5 °C, 25 °C, and 35 °C, respectively. FTIR spectroscopy and SEM were used to reveal the chemical structure and the morphology of the hydrogels. SEM/EDS further confirmed the adsorption of the copper(II) on the resulting hydrogels. Therefore, SB/P(AA-co-AM) hydrogels could have promising applications as water retention agents and metal ions adsorbents in water treatment and agricultural industries.

  • Researchpp 3304-3322Wei, P., Wang, B. J., Dai, C., Huang, S., Rao, X., Li, W., and Zhou, D. (2014). "High-frequency heating behavior of veneer-based composites: Modelling and validation," BioRes. 9(2), 3304-3322.AbstractArticlePDF

    A one-dimensional theoretical heat and mass transfer model was developed for high-frequency (HF) heating of veneer-based composites, such as laminated veneer lumber (LVL) and plywood. This model was based on the basic principles of energy and mass conservation, momentum conservation of gas flow, and gas thermodynamic relations. The response variables, including temperature, gas pressure, and moisture content (MC), were linked to basic material properties, such as veneer density, thermal conductivity, permeability, and dielectric properties. Initial and boundary conditions for solving the governing equations were also considered. The model was further validated by experiments with veneer HF heating and LVL HF heating. The model predictions agreed well with the experimental results. During veneer HF heating, the inner veneer core layers had lower MC than the outer surface layers. Compared to conventional hot platen heating, HF heating was proven to be an efficient and robust method for manufacturing veneer-based composites.

@BioResJournal

54 years ago

Read More