NC State
BioResources
  • Reviewpp 6844-6867Chin, K., Ibrahim, S., Hakeem, K., H’ng, P., Lee, S., and Mohd Lila, M. (2017). “Bioenergy production from bamboo: Potential source from Malaysia’s perspective,” BioRes. 12(3), 6844-6867.AbstractArticlePDF
    Global energy sectors are facing the crucial challenge of sustainability and diversification of energy resources. Seeking renewable resources with a sustainable supply is therefore a matter of the utmost concern. In this respect, bamboo, a renewable lignocellulosic material and non-food biomass, has great potential to be utilized to produce energy. Several studies have been conducted on a wide range of bamboo species and the results have shown that bamboo could potentially be used as a suitable fuel because it shares desirable fuel characteristics present in other woody biomass. Bamboo can be used as an energy source by converting it into solid, liquid, and gaseous fuels. However, to utilize bamboo as a high promise energy crop resource for biofuels, a secure and stable supply is required. Therefore, additional information on the availability, cultivation, and harvesting operations of bamboo is vital to ensure the practicability of the idea. The objective of this review is to highlight the potential of bamboo as an alternative source of bioenergy production, particularly in a Malaysian context, with emphasis on the concepts, pretreatment, and conversion technologies.
  • Reviewpp 6868-6884Radics, R. I., Gonzalez, R., Bilek, E. M., and Kelley, S. S. (2017). "Systematic review of torrefied wood economics," BioRes. 12(3), 6868-6884.AbstractArticlePDF

    This literature review aims to provide a systematic analysis of studies on the financial aspects of producing torrefied biomass and torrefied pellets. There are substantial differences in the specific technologies, operating conditions, scale of the demonstration, and properties of biomass feedstock. There is a lack of reports that consider the entire supply chain, which is required for an understanding of the high-cost steps. To obtain a robust view of the torrefaction processes’ financial prospects the authors have used both peer-reviewed and non-peer-reviewed papers that allowed the researchers to include thirty-one papers in this analysis. All these studies establish that the prices of the biomass and the final torrefied product are critical. The product yield and caloric content, which are related to pricing, were also key financial drivers. The lower freight costs due to high-energy density of the torrefied pellets was recognized and calculated, but some other benefits were not quantified. There is a need for a detailed and flexible torrefaction financial model that includes variations in financial assumptions and biomass properties. Given the uncertainty around many specific steps, there is value in including stochastic tools in these financial analyses.

  • Reviewpp 6885-6901Komesu, A., Wolf Maciel, M. R., and Maciel Filho, R. (2017). "Separation and purification technologies for lactic acid – A brief review," BioRes. 12(3), 6885-6901.AbstractArticlePDF

    Lactic acid is an important platform chemical with a wide range of applications. Production of lactic acid by fermentation is advantageous because renewable and low cost raw materials can be used as substrates. After fermentation, the broth needs to be purified to obtain pure lactic acid for further uses. Thus, efficient downstream processes are very important because they account for 50% of the production costs. This review discusses different processes that are currently employed for lactic acid recovery, focusing on precipitation, solvent extraction, and separation with membranes. Advances in such recovery processes and drawbacks that limit the application of these technologies at the industrial level are also presented.

@BioResJournal

55 years ago

Read More