NC State



Peer-reviewed open-access journal devoted to the science and engineering of lignocellulosic materials, chemicals, and their applications for new uses and new capabilities

About the journal

BioResources (ISSN: 1930-2126) An international open-access journal that publishes original research and reviews about lignocellulosic materials, chemicals, & their applications.

  • Editing services included with publication fee
  • Articles published fast after acceptance
  • Impact factor of 1.614 (Journal Citation Reports)
  • Ranked #2 in Wood Science & Technology category (Google Scholar)

How to Get a New Account at BioResources

View our current issue

Browse Volumes and Issues

Submit a Manuscript

View the FRC Symposium Proceedings

Featured Editorials

  • Editorialpp 1-2Lavoine, N. (2022). "Fostering entrepreneurial thinking in biomaterials education," BioResources 17(1), 1-2.AbstractArticlePDF

    The concept of entrepreneurial thinking is gaining attention in higher education. Originally attributed to entrepreneurs, this concept embraces a set of attitudes, skills, and behaviors that can also help students, engineers, and researchers to succeed academically, professionally, and personally. This editorial discusses the benefits of developing and adopting an entrepreneurial thinking in biomaterials science and engineering. Our society is constantly evolving, and the next generations of engineers and researchers will have to adapt fast to the needs and propose innovative solutions to the demands. A strong entrepreneurial mindset may thus be key for boosting our efforts towards innovation and sustainability.

  • Editorialpp 3-6Hubbe, M. A. (2022). "What to do with toxic, contaminated cellulose-based adsorbents," BioResources 17(1), 3-6.AbstractArticlePDF

    This editorial considers the end fates of toxic materials, such as heavy metals, dyes, and synthetic organic compounds, which can be recovered from polluted water by using bio-based adsorbents. The point of the editorial is that insufficient research attention has been paid to the final fate of such contaminants. By contrast, much is known regarding factors affecting the adsorption capacities and rates of adsorption onto cellulose-based materials. Highly contaminated solutions are produced during the regeneration of biosorbent materials. Eutectic freeze crystallization potentially could be used to isolate relative pure compounds of heavy metals from such solutions. Alternatively, biochar can be prepared from cellulosic material in such a way as to achieve strong attachment to certain pollutants. Such biochar, after its use as an adsorbent, could be placed in the ground, where it can be expected to remain stable as sequestered carbon. A high ion exchange capacity of such biochar has potential to reduce the rates of leaching, which could otherwise lead to contamination of groundwater near to landfill sites. As shown by these examples, some promising answers to the final fate of contaminants may conform to a “circular economy” model, whereas other promising answers may conform to a “cradle-to-grave” viewpoint.

  • Editorialpp 6548-6550Ruffino, R. (2021). "Sustainable design: Aspects of sustainable product development," BioResources 16(4), 6548-6550.AbstractArticlePDF

    When NC State University recently hired me to lead a course concentration in sustainable design, I began to hone in on what sustainable product development and design translate to and its actionable applications. Sustainable product development and design of current and future consumer products and services are methods that create a proactive versus a reactive approach. The development of sustainable products and systems must start at the beginning phase of ideation and continue through the entire process to achieve multiple design purposes and duration with a designated end-of-life plan. In contrast, generally, products are developed with end of life and longevity as a secondary thought, and with recycling as a potential option. If the goal is the longevity of a product or service, one needs to look beyond recycling and more at the concept of development. A sustainable product development approach and design thinking are how to accomplish product longevity.

  • Editorialpp 6551-6552Hart, P. W. (2021). "Trust the literature, but verify – Case study of starch acetate as a barrier material under jungle conditions," BioResources, 16(4), 6551-6552.AbstractArticlePDF

    A case study is presented in which several articles and patents suggested a specific outcome. When the actual experimental work was performed, the results were found to be several orders of magnitude away from predicted values. Close re-inspection of the literature suggested that most of the authors actually extrapolated the results to conditions that were not applicable to their specific studies, resulting in the reporting errors. It is important to use literature to assist in research, but it is equally important not to blindly follow it either.

  • Editorialpp 6553-6555Pinto, R., Corazza, M. L., and Ramos, L. P. (2021). "Bringing the concept of drop-in fuels into the pulp and paper industry," BioResources 16(4), 6553-6555.AbstractArticlePDF

    The pulp and paper sector is undertaking several initiatives to decrease the carbon footprint of its industrial activities. To do so, any emission must be offset by introducing efficient carbon fixation strategies such as reforestation and the development of biobased products and processes. The production of drop-in fuels may play an important role in this scenario. Drop-in fuels provide a good way to add value to otherwise underutilized process streams and wastes, reducing greenhouse gas emissions, minimizing other environmental impacts, and improving process sustainability.

  • Editorialpp 6556-6559Hubbe, M. A. (2021). "Energy efficiency – A particular challenge for the cellulose-based products industries," BioResources 16(4), 6556-6559.AbstractArticlePDF

    Wood-processing facilities, including pulp, paper, lumber, and engineered wood facilities, use large amounts of energy for such purposes as evaporative drying and the curing of adhesives. Much of that energy is already being supplied by the incineration of biomass, and there is opportunity to increase the proportion of renewable energy that is used. Specific changes can be made within such factories that allow them to come closer to what is thermodynamically possible in terms of avoiding the wastage of exergy, which can be defined as useful energy. Savings in exergy are often obtained by optimization of a network of heat exchangers within an integrated system. No steam should be allowed to leak to the atmosphere; rather the latent heat (due to phase transitions) and sensible heat (due to temperature changes) are recovered during the heating up of incoming air and water, ideally at a similar range of temperatures. Thus, by a combination of process integration and full utilization of cellulosic residues generated from the process, even bio-based industries can be made greener.



BioResources provides a venue to promote scientific discourse and foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including crop residues.



BioResources publishes articles discussing advances in the science and technology of biomass obtained from wood, crop residues, and other materials containing cellulose, lignin, and related biomaterials. Emphasis is placed on bioproducts, bioenergy, papermaking technology, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.



BioResources is an open-access, web-based journal, with abstracts and articles appearing in hypertext meta-language (HTML) and full articles downloadable for free as Adobe portable document format (PDF) files. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in the journal, and users can use, reuse, and build upon the material in the journal for non-commercial purposes as long as attribution is given when appropriate or necessary.


The Co-Editors of BioResources are Dr. Lucian A. Lucia and Dr. Martin A. Hubbe, Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Box 8005, Raleigh, NC 27695-8005, USA.

Dr. Lucia
(919) 515-7707

Dr. Hubbe
(919) 513-3022

Searching and Databases

Articles published in BioResources can be found using the following database services (this list is not exhaustive):

  • Web of Science (Thomson Reuters, ISI)
  • SciFinder Scholar (American Chemical Society)
  • Directory of Open Access Journals (Lund University)
  • PaperChem (Elsevier, Engineering Village)
  • Compendex (Elsevier, Engineering Village)
  • Academic Search Complete (EBSCO Industries)
  • CAB Abstracts (EBSCO Industries)
  • Scopus (Elsevier)
  • Google Scholar (
  • CrossRef (

Peer-Review Policy

All research articles and scholarly review articles are subject to a peer review process. BioResources offers web-based submission and review of articles.


BioResources, a business unit of North Carolina State University, was started in 2006 with support from the College of Natural Resources and has received in-kind assistance both from the College and from the NC State Natural Resources Foundation.