Research Articles
Latest articles
- Researchpp 5662-5675Yuan, Q., and Fu, F. (2014). "Application of carbon fiber paper in integrated wooden electric heating composite," BioRes. 9(3), 5662-5675.AbstractArticlePDF
To endow wooden material with an electric heating function, carbon fiber paper, as an electric heating membrane, was laminated with wood veneer to prepare wooden electric heating composites. The electric heating performance of the membrane under different power densities and resistance stabilities, as well as the influencing mechanism of the process on both the resistance and bonding performance of the composite, were studied. The surface temperature of the membrane and composite increased by more than 20 °C in 30 s and 10 min, respectively, after electricity was applied. Furthermore, the samples had a surface temperature unevenness of 4 and 2 °C, respectively. Many potential contact points between carbon fibers fulfilled their connections, reducing the drop rate of resistance (DRR) after hot-pressing to the range of 30% to 43%. The hot-press pressure and glue spread had a high degree of relevancy (coefficient of determination R2=0.960 and R2=0.997) with the DRR of the composite, respectively. The composite exhibited a negative temperature coefficient effect (NTC), and the DRR after heating for 15 h was 4.4%, but tended to ultimately stabilize. The composite, which exhibited good time-temperature effects and had a linear relationship with a high value of the coefficient of determination (R2=0.983) between power density and equilibrium temperature, displays solid potential for use in preparing integrated wooden electric heating products.
- Researchpp 5676-5687Gaff, M., (2014). "Three-dimensional pneumatic molding of veneers," BioRes. 9(3), 5676-5687.AbstractArticlePDF
The goal of this paper is to introduce a new testing method suitable for the evaluation of the three-dimensional (3-D) moldability of veneers and to use this method to test the impact of specific factors on the 3-D pneumatic molding process. The tested factors included veneer moisture content, wood species, shape of test piece, and fixing method on the maximum wood deflection. Veneers were molded using compressed air on equipment designed by our group for the sole purpose of this experiment. The results indicated that the monitored factors had an effect on deflection during the 3-D molding process. The results of this investigation extend the state-of-the-art knowledge regarding this technology and indicate the possibility of utilizing this innovative testing method for 3-D molded veneers.
- Researchpp 5784-5793Kotlarewski, N. J., Ozarska, B., and Gusamo, B. K. (2014). "Thermal conductivity of Papua New Guinea balsa wood measured using the needle probe procedure," BioRes. 9(4), 5784-5793.AbstractArticlePDF
A study was undertaken with the aim to determine thermal properties of balsa wood grown in plantations in Papua New Guinea. Thermal conductivity values were measured using the needle probe procedure according to ASTM D5334 (2008). The mean thermal conductivity results of balsa were in the range of 0.0381 W/mK to 0.0665 W/mK, similar to other materials currently used as insulators in the construction industry. A balsa sample with a density of 113 kg m3 had the lowest thermal conductivity value, 0.0339 W/mK, across the tangential and radial wood grain directions. Balsa is exported from Papua New Guinea mostly as end-grain panels to international markets to optimise its strength properties in the axial direction for applications that are exposed to compressive forces. This study revealed that there is the opportunity for Papua New Guinea balsa processors to consider producing perpendicular-grain panels for insulation markets, as the mean thermal conductivity values in this direction can be as low as 0.0381 W/mK, which is much lower than the thermal conductivity of the current end-grain panels at 0.0665 W/mK. The finding creates a potential design opportunity for balsa processors to consider entering new commercial markets to promote Papua New Guinea-grown balsa.
- Researchpp 5794-5800Sun, F., Jiang, Z. Sun, Q., and Lu, F. (2014). "Changes in chemical composition and microstructure of bamboo after gamma ray irradiation," BioRes. 9(4), 5794-5800.AbstractArticlePDF
Changes in bamboo composition and microstructure following 60Co gamma (γ) ray irradiation were investigated by solid state 13C cross-polarization (CP) magic-angle spinning (MAS) spectroscopic nuclear magnetic resonance spectrometry (NMR) and a field emission scanning electron microscope (FESEM). The results indicated that irradiation doses lower than 100 KGy resulted in the degradation of hemicelluloses via scission of molecular chains, but there was also repolymerization and condensation in lignin. Irradiation doses higher than 100 KGy resulted in the degradation of cellulose, hemicelluloses, and lignin by significant oxidation reaction and partial scission of biopolymer chains to yield more small fragments with carbonyl groups.
- Researchpp 5801-5816Gupta, G., Sahai, V., and Gupta, R. K. (2014). "Thermal stability and thermodynamics of xylanase from Melanocarpus albomyces in presence of polyols and salts," BioRes. 9(4), 5801-5816.AbstractArticlePDF
An extracellular xylanase from the thermophilic fungus Melanocarpus albomyces IIS 68 was evaluated for its activity and stability in the presence of polyols and salts at 60 °C, and found to be an effective protecting agent for thermal deactivation of enzyme. Response surface methodology was employed to study the synergistic effects of glycerol and NaCl (thermo-stabilizers) for xylanase stability. The addition of these thermo-stabilizers resulted in more than a 10-fold increment in enzyme half-life. Activation energy (Ea) and thermodynamic parameters such as ∆H, ∆G, and ∆S were calculated for the thermal inactivation of free and immobilized xylanase. The immobilized enzyme underwent substantially less conformational changes because of its enhanced stability and increased compactness, providing better thermo-stability at elevated temperatures. These findings suggest that the combined effect of glycerol and sodium chloride serves as a potential stabilizer for extracellular thermophilic xylanase, which finds commercial application in many industries, especially in the pulp and paper industry.
- Researchpp 5817-5830Peng, Y., Liu, R., and Cao, J. (2014). "Effects of antioxidants on photodegradation of wood flour/polypropylene composites during artificial weathering," BioRes. 9(4), 5817-5830.AbstractArticlePDF
The influence of antioxidants and of their compound systems were evaluated relative to the photodegradation of wood flour/polypropylene (WF/PP) composites using ultraviolet accelerated weathering. Six groups of samples were exposed in an accelerated weathering tester for a total duration of 960 h. The surface color, gloss, and flexural properties of the samples during weathering were tested. In addition, the weathered surfaces were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). The results revealed the following: (1) after weathering, all samples showed significant color fading and gloss change; (2) composites containing antioxidants showed less loss of flexural strength, fewer surface cracks, and better thermal stability after weathering than the control composite; (3) the crystallinity of polypropylene increased in weathered samples due to recrystallization of lower molecular weight polypropylene; and (4) antioxidant 168 (AO-168) was beneficial to color stability at the early stage of weathering, while composites containing 0.2% antioxidant 1010 (AO-1010) and 1.0% AO-168 (AO-1) maintained the highest retention ratios of flexural properties during weathering.
- Researchpp 5831-5844Lou, B., Wu, S., Wang, X., Ma, K., and Li, M. (2014). "Experimentation and simulation of the combustion of biomass briquettes in southern China," BioRes. 9(4), 5831-5844.AbstractArticlePDF
The thermogravimetry (TG) of typical biomass briquettes used as fuel in southern China was analysed to investigate the influences of fuel grain size and heating rate on combustion. The results suggested that grain size and heating rate exerted little influence on combustion. In accordance with the data and the TG results obtained from the fuel, a biomass grate incinerator process was numerically simulated using fluid dynamics-based incinerator code (FLIC) software to obtain the solid phase temperature distribution of the fuel along the bed length, the spatial temperature distribution of flue gas, and the underlying variation laws of the primary components. A comparison of the mass-loss curves from the numerical simulation to the TG analysis demonstrated that the two curves exhibited consistently staged variations, including dehydration and drying, fast pyrolysis and combustion of volatiles, and the burnout of residual carbon. The specific characteristics of the fuel obtained from these tests improved the accuracy of the numerical simulation, while the variations in temperature and components obtained were conducive to optimising the combustion process of a biomass incinerator.
- Researchpp 5845-5857Teng, Y., Ding, J., Wang, B., Guo, X., and Cao, P. (2014). "Cutting forces and chip morphology in medium density fiberboard orthogonal cutting," BioRes. 9(4), 5845-5857.AbstractArticlePDF
The influence of rake angle, cutting speed, and uncut chip thickness on cutting forces and chip morphology in medium density fiberboards orthogonal cutting was investigated. With regard to the normal cutting force and the feed force recorded, there were important variations when machining conditions were modified, or when some tool characteristics were changed. The findings led to the conclusion that there was a close relationship between the cutting conditions and chip formations as well as the cutting forces. Such forces were found to be particularly sensitive to changes in uncut chip thickness, as well as showing dependence on the cutting speed of the tools in orthogonal cutting.
- Researchpp 5858-5870Li, H., Li, C., Chen, H., Zhang, D., Zhang, S., and Li, J. (2014). "Effects of hot-pressing parameters on shear strength of plywood bonded with modified soy protein adhesives," BioRes. 9(4), 5858-5870.AbstractArticlePDF
The heating rate of the core layer of plywood during hot-pressing is of great importance to the final quality of the plywood and is affected by many factors, such as the hot-pressing temperature (THP), hot-pressing pressure (PHP), hot-pressing time (tHP), veneer layers, and moisture content. In this study, multi-plywood using modified soy protein (MSP) adhesives prepared to investigate the effects of THP, t HP, and veneer layers on the core layer temperature during hot-pressing. The results indicated that all the core layer temperature curves were divided into four stages. The first constant temperature stage and the slow warming stage were decisive with respect to the time needed for the core layer to reach the THP. The time of moisture vaporization was approximately 400 s in the 3-layer plywood and approximately 900 s in the 5-layer plywood. In order to get an ideal strength the tHP should greater than the time of moisture vaporization; therefore in theory, the optimum parameters of the 3-layer plywood production were tHP of 600 to 720 s and THP of 120 to 125 °C. The research provides a theoretical basis for optimizing the hot-pressing of plywood.
- Researchpp 5871-5882Zhao, M., Wang, Y., Zhang, C., Li, S., Huang, Z., and Ruan, W. (2014). "Synergistic and pretreatment effect on anaerobic co-digestion from rice straw and municipal sewage sludge," BioRes. 9(4), 5871-5882.AbstractArticlePDF
Anaerobic digestion is considered to be a priority disposal technology for rice straw and sewage sludge. In this study, the synergistic and alkali-treat effect on co-digestion of rice straw and sewage sludge was investigated. The results indicated that the co-digestion of alkali-treated rice straw and sewage sludge had the best biogas yield of 338.9 mL/gVS, which was 1.06 and 1.75 times that of either alkali-treated rice straw or sewage sludge alone, respectively. The actual biogas and methane yields of a co-digestion group with raw rice straw and sewage sludge (G4) increased 26.39% and 24.79% relative to the theoretical calculation based on raw rice straw digestion (group G2) and sewage sludge digestion (group G5), suggesting that a synergistic effect occurred during the co-digestion process. The maximum concentration of volatile fatty acids (VFA) was 4860 mg/L on the 4th day in the sewage sludge group. Xylanase activity reached a maximum of 10.55 U/mL on the 6th day in the alkali-treated rice straw group, while the concentration of protease enzyme was relatively higher in the sewage sludge group than in others. The removal rates of cellulose and hemicellulose in groups with alkali treatment were 32.25% and 36.96% (G1) and 40.86% and 41.61% (G3), higher than that of groups without treatment.