Research Articles
Latest articles
- Researchpp 457-468Burawska, I., Zbieć, M., Tomusiak, A., and Beer, P. (2015). "Local reinforcement of timber with composite and lignocellulosic materials," BioRes. 10(1), 457-468.AbstractArticlePDF
This work compares the effectiveness of local reinforcements of pine beams. Test beams were reinforced with carbon fiber reinforced polymer (CFRP) tape and layered laminate bamboo composite (LLBC) plates. The effective length of local reinforcement reached 5% of the entire beam length. Beams were tested to determine static bending strength in accordance with the EN-408 (2012) standard. On the basis of testing and calculations, it was concluded that local reinforcement with both reinforcing materials caused a significant (p < 0.05) gain in load capacity and modulus of elasticity. The LLBC, which has a tensile strength 25 times lower and a modulus of elasticity 17 times lower than CFRP, resulted in the highest load capacity. This phenomenon is related to the more uniform stress distribution on the composite with LLBC plate – glue bond – wood layers and lower strain within the bond in comparison to the CFRP reinforcement. Therefore, critical stresses within the bond were not exceeded, which often happens in reinforcement with materials of high modulus of elasticity (such as CFRP tape).
- Researchpp 469-481Zhang, Z., Wu, Q., Zhang, C., Wang, Y., Li, Y., and Zhang, Q. (2015). "Effect of inlet velocity on heat transfer process in a novel photo-fermentation biohydrogen production bioreactor using computational fluid dynamics simulation," BioRes. 10(1), 469-481.AbstractArticlePDF
Temperature is one of the most important parameters in biohydrogen production by way of photo-fermentation. Enzymatic hydrolysate of corncob powder was utilized as a substrate. Computational fluid dynamics (CFD) modeling was conducted to simulate the temperature distribution in an up-flow baffle photo-bioreactor (UBPB). Commercial software, GAMBIT, was utilized to mesh the photobioreactor geometry, while the software FLUENT was adopted to simulate the heat transfer in the photo-fermentation process. The inlet velocity had a marked impact on heat transfer; the most optimum velocity value was 0.0036 m•s-1 because it had the smallest temperature fluctuation and the most uniform temperature distribution. When the velocity decreased from 0.0036 m•s-1 to 0.0009 m•s-1, more heat was accumulated. The results obtained from the established model were consistent to the actual situation by comparing the simulation values and experimental values. The hydrogen production simulation verified that the novel UBPB was suitable for biohydrogen production by photosynthetic bacteria because of its uniform temperature and lighting distribution, with the serpentine flow pattern also providing mixing without additional energy input, thus enhancing the mass transfer and biohydrogen yield.
- Researchpp 482-498Tenorio, C., Moya, R., Tomazello Filho, M., and Valaert, J. (2015). "Quality of pellets made from agricultural and forestry crops in Costa Rican tropical climates," BioRes. 10(1), 482-498.AbstractArticlePDF
Pellets may be produced with different types of agriculture or forestry crops in Costa Rica. This work evaluated the energy, physical, and mechanical properties of pellets fabricated from 12 types of agricultural and forestry crops (Ananas cumosos, Arundo donax, Coffea arabica, Cupressus lusitanica,empty fruit bunch and oil palm mesocarp fiber of the fruit of Elaeis guineensis, Gynerium sagittatum, Pennisetum purpureum, Phyllostachys aurea, Saccharum officinarum, Sorghum bicolor,and Tectona grandis), and similarities among these crops were established by multivariate principal component analysis. High variation was found in the pellet properties. The energy evaluation revealed that C. lusitanica and P. aurea are the crops with the best qualities for fuel use because of their high calorific values (from 16807 kJ/kg and 19919 kJ/kg, respectively) and low ash content (1.03% and 3.39%, respectively). As for physical properties, most crops exhibited values within the range noted by several authors and standards. All 12 pellet crops displayed high durability (from 72.12% to 92.98%) and compression force (from 295.18 N to 691.86 N). Moreover, the evaluation of crop similarities allowed the determination of four group combinations. Within these groups, C. lusitanica, P. aurea, and G. sagittatum had similar energy qualities and the best caloric characteristics.
- Researchpp 499-509Li, R., Ekevad, M., Guo, X., Ding, J., and Cao, P. (2015). "Effect of pressure, feed rate, and abrasive mass flow rate on water jet cutting efficiency when cutting recombinant bamboo," BioRes. 10(1), 499-509.AbstractArticlePDF
The impact of varying pressure, feed rate, and abrasive mass flow rate on the efficiency of an abrasive water jet cutting process was studied in this work. Recombinant bamboo samples with thicknesses of 5, 10, and 15 mm were cut by the abrasive water jet. The upper kerf width, lower kerf width, and the ratio of the upper kerf width to lower kerf width were chosen as the efficiency parameters. Mathematical models were developed to describe the relationship between the input process parameters and the efficiency parameters. The arrangement of experiments and analysis of results were performed based on response surface methodology. The evaluated model yielded predictions in agreement with experimental results.
- Researchpp 510-526Kim, B. J., Huang, R., Xu, X., Lee, S. Y., Kunio, J., and Wu, Q. (2015). "Sound transmission properties of mineral-filled high-density polyethylene (HDPE) and wood-HDPE composites," BioRes. 10(1), 510-526.AbstractArticlePDF
Wood plastic composites (WPCs) offer various advantages and potential as a competitive alternative to conventional noise barriers. For this purpose, the influence of composite formulation on the sound transmission loss (TL) of WPCs needs to be fully understood. In TL testing, stiffness and surface density are major factors influencing the sound insulation property of filled plastics and WPCs. Experimental TL values decreased as sound frequency increased; and the TL values increased after passing a certain frequency level. The comparison of experimental TL curves among filled composites showed that the addition of fillers led to an increase in resonance frequency and TL values. However, at high filling levels, the stiffness decrease led to TL reductions. The experimental TL curves of filled composites, composed of mass law and stiffness law predictions, were well approximated with their combined TL predictions.
- Researchpp 527-537Li, X., Zhang, J., Liao, C., Chen, H., Luo, Y., and Li, X. (2015). "Mathematical simulation and design of a rectangular cavity of microwave pretreatment equipment used for wood modification," BioRes. 10(1), 527-537.AbstractArticlePDF
Wood pretreated by high-intensity microwaves was theoretically studied based on the Maxwell electromagnetic field equations and the heat and mass transfer mechanism of wood. The effects of feeding modes on the temperature field uniformity and energy efficiency were studied using the finite element method, and optimized parameters of the rectangular microwave resonant cavity were achieved. The results show that the feeding modes had a great effect on the temperature field uniformity of the wood and the energy efficiency. Compared to the side single-port, the upper single-port, and the upper-under port feeding modes, the two-side ports feeding mode was the best for temperature field uniformity and energy efficiency.
- Researchpp 538-547Chen, T., Niu, M., Xie, Y., Wu, Z., Liu, X., Cai, L., and Zhuang, B. (2015). "Modification of ultra-low density fiberboards by an inorganic film formed by Si-Al deposition and their mechanical properties," BioRes. 10(1), 538-547.AbstractArticlePDF
To improve mechanical properties of ultra-low density fiberboards (ULDFs), Si-Al compounds were mixed together with fibers during preparation of ULDFs, forming a thin film on the surface of the fibers via hydrogen bonding. This work mainly optimized two proposed methods in which the inorganic thin film was assembled on the surface of fibers, in terms of its effect on the mechanical properties of fibers. Microstructural characterization (such as micromorphology and elemental distribution, chemical bonding, and crystalline phase) of Si-Al compounds and ULDFs was done to evaluate the effects. The results revealed that an inorganic thin film (probably Al2O3-SiO2) covered the surface of the fibers. Compared with the control specimen, the modulus of elasticity, modulus of rupture, and internal bond strength of the specimen treated by the sol-gel process increased from 3.87 MPa to 13.19 MPa, 0.05 MPa to 0.16 MPa, and 0.010 MPa to 0.025 MPa, respectively. Based on its higher mechanical properties, a combined sol-gel method was judged to be better for enhancement of fibers than a separate deposition method.
- Researchpp 548-565Gao, J., Ti, C., and Chen, N. (2015). "Environmental comparison of straw applications based on a life cycle assessment model and emergy evaluation," BioRes. 10(1), 548-565.AbstractArticlePDF
Straw is considered to be a renewable resource for bioenergy and biomaterial. However, about 70% of straw is burned in fields, which causes serious air pollution in China. In this study, a life cycle assessment (LCA) model, together with emergy evaluation, was built to compare four straw applications after harvest vs. direct burning, including bioethanol (BE), combined heat and power plant (CHP), corrugated base paper (CP), and medium-density fiberboard (MDF). The results showed that BE and MDF would avoid greenhouse gas (GHG) emissions by 82% and 36%, respectively, while CHP and CP would emit 57% and 152% more GHG , respectively, compared with direct straw burning. Bioethanol had the highest renewability indicator (RI) of 47.7%, and MDF obtained the greatest profit of 657 Yuan·bale-1. The applications CHP and CP had low RI (< 10.3%) and profit (< 180 Yuan·bale-1). Due to water recycling and electrical power as a coproduct, BE had the lowest value (3 × 1011 sej·Yuan-1) of EmPM (emergy per unit money profit); the EmPM value of CP was 18.6 times higher than that of BE. The four straw applications would also greatly reduce particles emission (57 to 98%) to air. BE was judged to be the most environmentally friendly application among the four straw applications. Imposing a carbon tax would encourage investment in BE, but discourage the applications CHP and CP.
- Researchpp 566-574Zhang, J., Zhang, W., and Zhang, Y. (2015). "Pore structure characteristics of activated carbon fibers derived from poplar bark liquefaction and their use for adsorption of Cu(II)," BioRes. 10(1), 566-574.AbstractArticlePDF
In this work, wood bark was liquefied to prepare activated carbon fibers, which were obtained through melt-spinning, stabilization, carbonizing, and stream activation. The effects of varying activation temperature on the pore structure and the adsorption capacity of the liquefied wood bark activated carbon fibers (LWBACFs) were studied using analysis of nitrogen adsorption-desorption isotherms and static adsorption of copper (II) ions from aqueous solution. The results indicated that higher specific surface area was obtained as the activation temperature increased. The specific surface area reached a maximum of 1962 m2/g with an average pore diameter of approximately 2 nm. Carbonization at 200 °C played an important role in the formation of pore structure. The adsorption of copper by LWBACFs was high, with a peak of 15 mg/g. All parameters showed that LWBACFs performed well in the adsorption of micropores.
- Researchpp 575-587Li, H., Deng, Y., Ye, H., Xiao, L., and Qiu, X. (2015). "Effect of temperature on polyelectrolyte expansion of lignosulfonate," BioRes. 10(1), 575-587.AbstractArticlePDF
The temperature effect on the polyelectrolyte expansion of sodium lignosulfonate (SL) was studied in the range of 20 to 38 °C. A narrow molecular-weight distribution fraction of sodium lignosulfonate was first obtained by gel column chromatography, which was suitable for the hydrodynamic radius (Rh) measurement by dynamic light scattering (DLS). Dynamic light scattering experiments showed that the hydrodynamic radius of sodium lignosulfonate decreased with increasing temperature. Using a quartz crystal microbalance (QCM) and atomic force microscopy (AFM), it was found that the adsorbed sodium lignosulfonate film lost water with increasing temperature and reabsorbed water with decreasing temperature. Surface tension and contact angle experiments showed that there were more hydrophobic groups on the surface of the sodium lignosulfonate molecule as the temperature increased. It can be concluded that the sodium lignosulfonate molecule shrank and became more hydrophobic with increasing temperature. Analysis suggests that the decreasing of the hydrogen-bond interactions between the sodium lignosulfonate molecule and water molecules with increasing temperature is the primary reason for the molecular conformation change of sodium lignosulfonate.