Research Articles
Latest articles
- Researchpp 5974-5986Ülker, O., and Burdurlu, E. (2016). "Effect of glass wool and stone wool additives on some mechanical properties of wood composites," BioRes. 11(3), 5974-5986.AbstractArticlePDF
Mechanical properties of wood composites made from multiple wood species (50% Crimean pine, 30% Eastern Black Sea oak, 15% quaking aspen, and 5% wood machining residues) were evaluated using various amount of glass wool (GW) and stone wool (SW) additives. A total of 70 experimental panels were produced with a target density of 640 kg/m3. The bending strength, modulus of elasticity, tensile strength parallel to the surface of boards, tensile strength perpendicular to the surface of boards (internal bond), and cutting (shear) strength parallel to the surface of boards were determined. After statistical analysis, the results indicated that the SW and GW additives decreased the bending strength and modulus of elasticity by 49% in almost all boards. The addition of SW resulted in a 6% reduction in the tensile strength parallel to the surface. Relative to SW, GW resulted in an additional 8% reduction in shear strength, a 3% reduction in the screw tensile strength perpendicular to the surface, and a 6% reduction in the tensile strength parallel to the surface. Thus, the SW and GW additives decreased all the selected mechanical properties of wood composites.
- Researchpp 5987-5993Hamzaçebi, C. (2016). "Optimization of process parameters in oriented strand board manufacturing by Taguchi method," BioRes. 11(3), 5987-5993.AbstractArticlePDF
Optimization of process parameters in oriented strand board (OSB) manufacturing is a vital issue for improving product quality. In this study, the Taguchi method (TM) was applied to determine the effects of production factors such as adhesive ratio, press pressure, and pressing time on the thermal conductivity of OSB. Obtained results showed that adhesive ratio is the main factor affecting thermal conductivity. Press pressure and pressing time are the second and third most important factors influencing thermal conductivity, respectively. The study also identified the optimal values of factors that minimize thermal conductivity.
- Researchpp 5994-6005Moradbak, A., Tahir, P. M., Mohamed, A. Z., Peng, L. C., and Halis, R. (2016). "Effects of alkaline sulfite anthraquinone and methanol pulping conditions on the mechanical and optical paper properties of bamboo (Gigantochloa scortechinii)," BioRes. 11(3), 5994-6005.AbstractArticlePDF
The objective of this study was to evaluate the mechanical and optical properties of paper made from alkaline sulfite anthraquinone and methanol (ASAM) unbleached pulp from bamboo (Gigantochloa scortechinii). The bamboo pulps were beaten using a PFI mill at 10,000 revolutions. To determine the properties of unbleached bamboo ASAM paper, handsheets with a density of 60 g/m2 were formed with 14 to 18% NaOH, 80/20 Na2SO3/ NaOH, 0.1% AQ, 0.5% EDTA, and 15% methanol pulping conditions. Pulping at 18% NaOH for 120 min cooking time produced paper with properties of 24.8 Nm/g and 43.02% for the tensile index and ISO brightness, respectively. Cooking at 16% sodium hydroxide for 90 min rendered the best results for mechanical and optical properties, with results of 20.86 Nm/g, 22.64 mN.m2/g, and 39.32% ISO value for the tensile, tear indices, and brightness, respectively. High quality bamboo paper produced by the ASAM pulping process was beneficial for producing highly durable paper and paperboard.
- Researchpp 6006-6016Pexa, M., Čedík, J., Hönig, V., and Pražan, R. (2016). "Lignocellulosic biobutanol as fuel for diesel engines," BioRes. 11(3), 6006-6016.AbstractArticlePDF
Energy recovery of lignocellulosic waste material in the form of liquid fractions can yield alcohol-based fuels such as bioethanol or biobutanol. This study examined biobutanol derived from lignocellulosic material that was then used as an additive for diesel engines. Biobutanol was used in fuel mixtures with fatty acid methyl ester (FAME) obtained by esterification of animal fat (also a waste material) in the amounts of 10%, 30%, and 50% butanol. 100% diesel and 100% FAME were used as reference fuels. The evaluation concerned the fuel’s effect on the external speed characteristics, harmful exhaust emissions, and fuel consumption while using the Non-Road Steady Cycle test. When the percentage of butanol was increased, the torque and the power decreased and the brake specific fuel consumption increased. The main advantage of using biobutanol in fuel was its positive effect on reducing the fuel’s viscosity.
- Researchpp 6017-6025Zhu, Y., Yang, L., Wu, W., Wang, Z., and Jin, Y. (2016). "Complete dissolution of ball-milled Masson pine using an aqueous sodium hydroxide solvent," BioRes. 11(3), 6017-6025.AbstractArticlePDF
An inorganic sodium hydroxide aqueous solution was developed for the dissolution of ball-milled softwood. Extractive-free Masson pine powder was prepared from the wood meal by planetary ball milling for various lengths of time. The effects of ball milling on the dissolution and regeneration of Masson pine powder were investigated. After 4 h of ball milling, the wood powder was completely dissolved in 6 wt% NaOH aqueous solution under vigorous magnetic stirring for 10 to 20 min at room temperature. The alkaline nitrobenzene oxidation products yield of 4 h ball-milled wood was very close to that of coarse wood meal without ball milling. Regeneration of the lignin fraction was easier than cellulose during the acid neutralization process, and the dialysis regeneration yield of total biomass was 91.1%. Therefore, the complete dissolution of the Masson pine in sodium hydroxide solution is of great potential for enhancing lignin isolation with a very little structural change.
- Researchpp 6026-6039Wang, X., Li, Y., Deng, Y., Yu, W., Xie, X., and Wang, S. (2016). "Contributions of basic chemical components to the mechanical behavior of wood fiber cell walls as evaluated by nanoindentation," BioRes. 11(3), 6026-6039.AbstractArticlePDF
Selective chemical extraction was applied to gradually remove classes of chemical components from wood cell walls. Nanoindentation was performed on the control and treated wood cell walls to evaluate the contributions of the chemical components to the cell walls by measuring the elastic modulus, hardness, and creep compliance. Burger’s model was applied to simulate the process of nanoindentation and to gain insight into the response of visco-elastic properties to the chemical components. Wood extractives showed limited effects on the cell-wall mechanics; however, the removal of hemicelluloses and lignin resulted in reductions of 11.7% and 28.4%, respectively, in the elastic modulus and 14.8% and 30.4%, respectively, in the hardness. The extraction of hemicelluloses and lignin reduced the resistance of wood cell walls to creep. Furthermore, the extracted parameters from Burger’s modeling indicated that cellulose exhibited the greatest influence on the mechanical properties of wood cell wall, while hemicelluloses exhibited the greatest contribution to cell-wall viscosity, and lignin contributed extensively to cell-wall elasticity.
- Researchpp 6040-6049Tian, S. Q., and Chen, Z. C. (2016). "Dynamic analysis of bioethanol production from corn stover and immobilized yeast," BioRes. 11(3), 6040-6049.AbstractArticlePDF
The use of low cost and abundant corn stover in yeast fermentation can reduce product costs. In this study, bioethanol was produced from a hydrolysate of corn stover using immobilized yeast. A kinetic model was established for the total reducing sugar consumption and the production of bioethanol. The parameter estimation for kinetic modeling considered the main process variables during bioethanol production from corn stover. Total reducing sugar concentrations decreased exponentially in the bioethanol fermentation for 6 h; consumption was more than 90%. To use kinetic modelling of yeast growth for bioethanol fermentation, the value of μmax reached 0.2891 h-1, and the matrix inhibition constant (KIS) and production inhibition constant (KIP) were 8.9154 g/dm3 and 0.00676 g/dm3, respectively. To use kinetic modelling of fermentation time on bioethanol, the maximum ratio of bioethanol production rate (qmax) reached 1.427 g/g•L. However, KIS was 2.813 g/dm3, and KIP was 0.0149 g/dm3.
- Researchpp 6050-6061Kuutti, L., Pajari, H., Rovio, S., Kokkonen, J., and Nuopponen, M. (2016). "Chemical recovery in TEMPO oxidation," BioRes. 11(3), 6050-6061.AbstractArticlePDFTo be regarded as environmentally friendly and economical, an industrial process using 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidation requires recycling and/or recovery of chemicals. In this work, hypochlorite recycling via electrolysis was evaluated and potential means for TEMPO recovery were explored. The most important variable affecting electrochemical hypochlorite conversion was the concentration of sodium chloride in the feed solution. With 30 g/L NaCl salt, a sufficient hypochlorite concentration of 0.8% could be obtained for pulp oxidation of up to 5% consistency. The regeneration of hypochlorite in the treated TEMPO solution was possible by electrolysis and further oxidation performed with only a small addition of make-up chemicals. During electrolysis, some TEMPO degradation took place; therefore, recovery of TEMPO should be done prior to electrolysis. For the recovery of TEMPO, solid phase extraction (SPE) was tested. The best recovery of TEMPO was obtained using a combination of hydrophobic SPE resin material and distillation (yields between 52% and 87%).
- Researchpp 6062-6084Reeb, C. W., Venditti, R., Gonzalez, R., and Kelley, S. (2016). "Environmental LCA and financial analysis to evaluate the feasibility of bio-based sugar feedstock biomass supply globally: Part 2. Application of multi-criteria decision-making analysis as a method for biomass feedstock comparisons," BioRes. 11(3), 6062-6084.AbstractArticlePDFEarly-stage evaluation of biofuel and bioproduct technologies is extremely complicated and involves many disparate feasibility criteria, including technical, financial, environmental, logistic, legal, social, and other aspects. Problems can arise for decision-makers when evaluating renewable technologies at this early stage due to bias, shifting preferences or priorities, occurrence of trade-offs, and decision-making complexity. Thus, a method is needed for evaluating disparate, typically non-comparable criteria concurrently. In Part 1 of this research, cradle-to-grave environmental LCA was conducted for biomass delivery to a biosugar refinery using Ecoinvent v2.2 data and the TRACI 2 impact assessment method for midpoint impacts. Biomass availability, delivered cost, sugar yield, transportation distance, harvestable months per year, and other aspects of supply chain feasibility were measured for eighteen feedstock biomass types. In Part 2, stochastic multi-attribute analysis (SMAA) was used alongside LCA to develop an environmental preference single-score probability distribution function for feedstock alternatives. Weighted single-scoring and ranking, using multi-criteria decision-making analysis (MCDA), was conducted considering five criteria of biomass supply feasibility: biomass delivered cost, biosugar yield, harvestable months, transport distance, and environmental preference single-score. Corn was shown to cost the most, followed by switchgrass and U.S. primary forest products. Transport distance was found to be highest for residues due to low yield per acre and low covered area. Results of MCDA show that Brazilian eucalyptus and Malaysian empty fruit bunch biomass types were consistently preferred relative to other biomass types. In the U.S., Genera biomass sorghum is most holistically preferred. It is shown that SMAA is helpful for translating LCA data for decision science. It was shown that MCDA can be useful for early-stage biorefinery technology commercialization decision-making, using the novel decision science tool described herein.
- Researchpp 6085-6096Yu, H., Chen, G., Xu, Y., and Chen, D. (2016). "Experimental study on the gasification characteristics of biomass with CO2/air in an entrained-flow gasifier," BioRes. 11(3), 6085-6096.AbstractArticlePDFThis study explored the gasification characteristics of pine sawdust and rice straw with CO2/air in a bench-scale entrained-flow gasifier. The effects of various gasification parameters, i.e., CO2/C, temperature, and biomass type, on the syngas composition, gasification index, and tar yield were investigated. When compared to air gasification, the CO2/air agent for gasification improved the yield of CO, and it decreased the tar yield and the yield of CO2 produced from biomass. The cold gas efficiency (CGE) of pine sawdust reached 87.06% at the CO2/C equivalence ratio of 0.25, whereas that of rice straw reached 73.35% at the CO2/C equivalence ratio of 0.50. When compared with air gasification, the CO2/air gasification increased the CGE of pine sawdust and rice straw by 4.20% and 9.17%, respectively. However, excessive CO2 was unfavorable to the gasification process. As the temperature increased, the yields of CO and H2 increased, and the tar yield decreased, thus improving the syngas quality. This study indicated that the addition of the proper level of CO2 for gasification improved the overall gasification efficiency. Moreover, the improvement for rice straw (herbaceous plant) was more noteworthy than for pine sawdust (woody plant).