Research Articles
Latest articles
- Researchpp 1968-1981Huang, X. Y., Li, F., Xie, J. L., De Hoop, C. F., Hse, C. Y., Qi, J. Q., and Xiao, H. (2017). "Microwave-assisted liquefaction of rape straw for the production of bio-oils," BioRes. 12(1), 1968-1981.AbstractArticlePDF
The acid-catalyzed liquefaction of rape straw in methanol using microwave energy was examined. Conversion yield and energy consumption were evaluated to profile the microwave-assisted liquefaction process. Chemical components of the bio-oils from various liquefaction conditions were identified. A higher reaction temperature was found to be beneficial to obtain higher energy consumption efficiency as heated by microwaves. Fourier transform infrared spectroscopy of the bio-oils indicated that hydroxyl groups underwent oxidation with increasing liquefaction temperature and/or prolonged reaction time; methanol esterification of oxidation products was also observed during the liquefaction process. The GC-MS chromatograms indicated that the further decomposition of C5 and C6 sugars resulted in a remarkable reduction of hydroxyl group products and an apparent increase in levulinic ester; furan derivatives and succinic acid derivatives were increased as well. The chemical reactions in liquefaction for the production of bio-oils mainly included decomposition of hemicelluloses, cellulose, and lignin; the oxidation reactions of the hydroxyl groups and methanol esterification were also presented. Comprehensively, a high content of hydroxyl group products was obtained at a moderate liquefaction condition (140 °C/15 min), and a high yield of levulinic ester products was acquired in severe reaction conditions (180 °C/15 min), regardless of energy consumption efficiency.
- Researchpp 1982-1990Hu, Z., Fu, S., and Tang, A. (2017). "Fabrication of light-triggered AuNP/CNC/SMP nanocomposites," BioRes. 12(1), 1982-1990.AbstractArticlePDF
Cellulose, an abundant natural polysaccharide, can be applied to immobilize particles on the surface due to the presence of ample hydroxyl groups. A series of different sizes and contents of gold nanoparticles (AuNP) were prepared on cellulose nanocrystal (CNC). The obtained AuNP/CNC nanocomposites were then blended with shape-memory polyurethane (SMP) to prepare light-triggered AuNP/CNC/SMP nanocomposites through solvent conversion and a solution casting method. The nanocomposite films were endowed with higher mechanical properties and striking remote-control light-triggered shape-memory properties. Moreover, the CNC in the composites also enhanced the photothermal effect of AuNPs by preventing the aggregation of AuNPs. At the same time, the content of AuNPs with existing CNC had a stronger effect on the elevated temperature (∆T) and the shape-memory properties of films in comparison to the size of the AuNPs.
- Researchpp 1991-2003Zhao, G., Ji, S., Sun, T., Ma, F., and Chen, Z. (2017). "Production of bioflocculants prepared from wastewater supernatant of anaerobic co-digestion of corn straw and molasses wastewater treatment," BioRes. 12(1), 1991-2003.AbstractArticlePDFNovel bioflocculants (BS-MBF) were prepared using the wastewater supernatant from anaerobic co-digestion of corn straw and molasses wastewater as a nutrient resource. Acetic acid and ethanol were the dominant fermentation products during the anaerobic digestion process and were estimated to be 50.5% and 30.0%, respectively, after 150 d of operation. Equal volumes of bioflocculant producing bacteria F2 (Rhizobium radiobacter) and F6 (Bacillus sphaericus) were mixed to form F+, which was inoculated to wastewater supernatant at different times. A maximum flocculation activity of 91.3% was achieved, and 2.32 g/L of purified bioflocculant was extracted when a compound medium from 110-d wastewater supernatant was used. The removal efficiencies of heavy metals from simulated electroplating wastewater were tested by using these prepared bioflocculants. The optimal conditions for heavy metal removal to BS-MBF were found to be at 374 mg/L at an initial pH of 6.0 and a contact time of 40 min. The adsorption capacities for Cu2+ and Zn2+ reached more than 90%, while for Cr6+ it reached approximately 30%. Overall, the study showed for the first time that wastewater supernatant from anaerobic co-digestion of corn straw and molasses wastewater can be used for producing bioflocculants, which can be effectively used to remove heavy metals from electroplating wastewater.
- Researchpp 2004-2014Shu, Z., Liu, S., Zhou, L., Li, R., Qian, L., Wang, Y., Wang, J., and Huang, X. (2017). "Physical and mechanical properties of modified poplar veneers," BioRes. 12(1), 2004-2014.AbstractArticlePDFTo improve the performance and expand applications of poplar plantation wood, modified poplar veneers based on 1-butyl-3-methylchloride ([Bmim]Cl) were studied. Two groups of poplar veneers were impregnated in ionic liquid [Bmim]Cl (group C) and pure water (group B), separately. Techniques such as hot pressing-coagulation and bath-annealing were applied to these two groups to prepare modified samples. The physical and mechanical properties of each group were tested and characterized, using untreated group (A) as the control. The ductility and thickness variation rate of samples in group C were higher than those in group B. The width variation rate of samples in group C was 64% greater than those in group A and 50.4% greater than those in group B. Scanning electron microscopic (SEM) results also showed the plasticity and the improvement in the transverse connection of samples in group C; these results were more obvious than that for samples in group B. The tensile strength and elastic modulus of samples in group C were higher than those of group B. Compared with the control group, the crystallinity index (CrI) of samples in groups B and C was increased and that of group C was the maximum, but the crystal form remained unchanged.
- Researchpp 2015-2030Moodley, P., and Kana, G. (2017). "Optimization of operational parameters for biohydrogen production from waste sugarcane leaves and semi-pilot scale process assessment," BioRes. 12(1), 2015-2030.AbstractArticlePDF
This study modeled and optimized the operational parameters for biohydrogen production from waste sugarcane leaves and assessed hydrogen production on a semi-pilot scale. A Box-Behnken design with input variables of substrate concentration (8 to 24 g/L), inoculum concentration (10% to 50% v/v), and hydraulic retention time (HRT, 24 to 96 h) was used. A coefficient of determination (R2) of 0.90 and the predicted optimum operational set-points of 14.2 g/L substrate concentration, 32.7% inoculum concentration, and 62.8 h HRT were obtained. Experimental validation produced a biohydrogen yield of 12.8 mL H2/g fermentable sugar (FS). A semi-pilot scale process in a 13-L Infors reactor under optimized conditions gave a cumulative hydrogen volume and yield of 3740 mL and 321 mL H2 g-1 FS, respectively, with a peak hydrogen fraction of 37%. Microbial analysis from the process effluent conducted by Polymerase Chain Reaction cloning indicated the presence of hydrogen-producing bacteria belonging to Clostridium sp., Klebsiella sp., and Enterobacter sp. These findings highlight the feasibility of biohydrogen production from sugarcane waste and provide preliminary knowledge on process scale up.
- Researchpp 2254-2268Pangh, H., and Doosthoseini, K. (2017). "Optimization of press time and properties of laminated veneer lumber panels by means of a punching technique," BioRes. 12(1), 2254-2268.AbstractArticlePDF
The impact of veneer punching pattern and density (343, 356, and 1424 hole·m-2) was tested relative to selected physic-mechanical properties of 5-ply laminated veneer lumber (LVL) panels fabricated from poplar wood (Populus deltoides) under different press time (5, 6, and 7 min). Samples were made with urea-formaldehyde resin using hot press technology at a uniform pressure of 10.8 N·mm-2 and temperature of 120 °C. The results indicated that punching the inner veneers (except the core veneer) of LVL significantly improved the average values of shear strength, modulus of elasticity, and bending strength (both parallel and perpendicular to the grain). In contrast to control samples, the veneer punching technique showed an overall negative impact on the water resistance of LVL (after either 2 or 24 h of immersion in water). Nevertheless, specimens with punching densities of 1424 hole·m-2 pressed for a maximum of 5 min were more dimensionally stable than the control samples. The physic-mechanical properties of LVL were significantly affected by presstime as well. Considering the data obtained, the presstime of LVL could be reduced to nearly 16.7%, or 1 min, by using a punching density of 1424 hole·m-2 without any significant negative change in the major physic-mechanical properties.
- Researchpp 2269-2283Martins, C. E. J., Dias, A. M. P. G., Marques, A. F. S., and Dias, A. M. A. (2017). "Non-destructive methodologies for assessment of the mechanical properties of new utility poles," BioRes. 12(2), 2269-2283.AbstractArticlePDFThe application of non-destructive technologies for the assessment of mechanical properties has been increasingly used due to its reliable assessment of the condition of timber elements. The application of such methods is well established for sawn timber and small-diameter roundwood. However, regarding the assessment of the mechanical properties for roundwood with larger diameters, which are usually used for new utility poles, a fewer number of studies are available. This research considered three different methodologies for application in Maritime Pine utility poles: i) longitudinal vibration, ii) transverse vibration, and iii) ultrasound. The methodology with better results was chosen for use in the second stage of testing. Furthermore, mechanical tests were performed to compare and validate the results from the non-destructive tests. The moisture contents and densities were also determined. Simple and multiple linear regression analyses were performed between the visual, dynamic, and mechanical properties. The longitudinal vibration method achieved the best correlation within the non-destructive methods, while the ultrasound method had no noticeable correlation. The vibration frequency (f) (r = 0.51) showed a better correlation with the bending strength (MOR) than the dynamic modulus of elasticity (MOEdyn) (r = 0.45). The static modulus of elasticity (MOE) was the best property used to predict MOR because it presented the highest correlation (r = 0.79).
- Researchpp 2284-2295Zhu, Q. L., Dai, L. C., Wu, B., Tan, F. R., Wang, W. G., Tang, X. Y., Wang, Y. W., He, M. X., and Hu, G. Q. (2017). "Integrated methane and ethanol production from livestock manure and soybean straw," BioRes. 12(2), 2284-2295.AbstractArticlePDFMethane and ethanol were co-produced from different feedstock, including a mixture of dairy manure and soybean straw (DMS), a mixture of pig manure and soybean straw (PMS), and soybean straw alone (SS), after anaerobic digestion times of 30 and 60 days in mesophilic conditions. Digesting DMS for 60 days led to the highest methane yield of 115.3 g/kg dry raw feed; however, the lowest ethanol yield of 88 g/kg dry raw feed was observed. After 30 days, SS yielded the lowest methane levels (45.2 g/kg dry raw feed) but the highest ethanol levels (113.5 g/kg dry raw feed). Analysis of the net energy balance showed that the highest net energy balance, 6549 kJ/kg of dry raw feedstock, was achieved from the digestion of DMS for 60 days. Overall, both the type of feedstock and length of digestion time played important roles in the integrated processing of methane and ethanol from livestock manure and straw.
- Researchpp 2296-2309Chen, Z., and Qu, G. (2017). "Shearing characteristics of corn stalk pith for separation," BioRes. 12(2), 2296-2309.AbstractArticlePDFThe rind of corn stalk (Zea mays L.) contains a high content of lignin, which is difficult for ruminants to digest. So, the separation of the pith and rind is the basis for the effective use of corn stalk. The shearing characteristics of pith are important parameters in the process of the separation of rind and pith for corn stalk. In this study, both the shearing strength and shearing energy were determined for the pith of cornstalk. The shearing force was measured at three moisture content levels (10 w.b.%, 40 w.b.%, and 70 w.b.%), different sample heights (lower, middle, and upper), and three different shearing speed levels (2 mm·min-1, 20 mm·min-1, and 50 mm·min-1). The shearing strength and the shearing energy were calculated from this data. The shearing energy was calculated by using the area under the shearing force versus the displacement curve. The results showed that the maximum shearing strength and the shearing energy increased as the moisture content increased. The maximum shearing strength and shearing energy were found to be 0.8452 MPa and 0.6446 J, respectively. Both the shearing strength and the shearing energy were found to be higher in the lower region of the stalk due to structural heterogeneity.
- Researchpp 2310-2325Chen, Y., and Guo, W. (2017). "Nondestructive evaluation and reliability analysis for determining the mechanical properties of old wood of ancient timber structure," BioRes. 12(2), 2310-2325.AbstractArticlePDF
The objective of this study was to evaluate the mechanical properties of ancient wood of Abies fabri (Mast.) Craib based on the nondestructive tests and reliability analysis. Nondestructive tests including resistograph and stress wave test, and destructive tests were conducted on the wood specimens. Results indicated that there were significant linear correlations between the resistance amplitude (F) and green density (ρ), the dynamic modulus of elasticity (ED) and static modulus of elasticity (MOE), modulus of rupture (MOR), and ultimate compressive strength (UCS) of wood specimens. The cumulative distribution of the predicted MOR and UCS based on the nondestructive tests could be well fitted by the normal distribution according to the χ2 test. Moreover, a reliability analysis program based on the first-order second-moment method was developed. Reliability analysis results showed that the reliability index increased nonlinearly with the increase of the live-to-dead load ratio, and decreased nonlinearly with the increase of the design values for all the simulation load cases. According to the minimum reliability index requirements of the Chinese national standard, it is suggested that the design value of MOR and UCS be 14.0 and 10.7 MPa, respectively.