Research Articles
Latest articles
- Researchpp 5953-5969Ordaz-Díaz, L. A., Valle-Cervantes, S., Rodríguez-Rosales, J., Bailón-Salas, A. M.,, Madrid-Del Palacio, M., Torres-Fraga, K., & De la Peña-Arellano, L. A. (2017). "Zeta potential as a tool to evaluate the optimum performance of a coagulation-flocculation process for wastewater internal treatment for recirculation in the pulp and paper process," BioRes. 12(3), 5953-5969.AbstractArticlePDF
The pulp and paper mill process requires large amounts of water. Therefore, the need to reuse water through the application of coagulation-flocculation processes, which is effective in the removal of solids and colloidal particles, has risen. In such processes, zeta potential (ZP) provides important information about the efficiency of the reagents used. The purpose of this study was to develop individual and combined tests of reagents to study turbidity and COD reduction based on ZP in the process of wastewater internal treatment for recirculation in the pulp and paper process. Factorial models were developed to explain the behavior of ZP depending on the different coagulants/flocculants. The statistical analyses showed that ZP had a positive correlation with parameters related to removal (COD and turbidity). It was demonstrated that innovate use of lentil extract (Lens esculenta) applied with aluminum sulfate favored the treatment, consistent with a coagulation-flocculation mechanism. The optimum doses of lentil extract were able to reduce the requirements of aluminum sulfate by almost 29%, providing an alternative strategy for water reuse processes in the pulp and paper industry.
- Researchpp 5970-5983Wang, X., and Si, H. (2017). "Conveying characteristics of dual pneumatic feeder used for biomass pyrolysis," BioRes. 12(3), 5970-5983.AbstractArticlePDF
A novel dual pneumatic feeder was developed to achieve constant and steady biomass conveying for pyrolysis. To facilitate the feedstock replenishment, an injection pipe was installed inside a pressure chamber to convey the feedstock. Another stream of gas entered the pressure chamber from the bottom to fluidize the particles. Experiments were performed to test the performance of the new feeder, and three injection pipes and gas distributors were used. Results showed that the feeding rate depended on both the injection and fluidizing gas velocities. The feeding rate decreased with the inner diameter (ID) of an injection pipe, due to its impact on gas velocity, while the effective injection distance had a negative effect within a certain range. The opening ratio of the gas distributors had a positive effect on the feeding rate. Then, a model was developed, based on the Ergun equation, to describe relationships between the feeding rate and the gas velocities. The classical equation was further reformed to establish the correlation between the solid mass flowrate and the construction parameters of the feeder. The developed model deviated from the measured values within ± 15%, which was considered capable to predict the feeder performances.
- Researchpp 5984-5995He, X., Xie, J., Xiong, X., Li, Y., Wei, Y., Quan, P., Mou, Q., and Li, X. (2017). "Study on dielectric properties of poplar wood over an ultra-wide frequency range," BioRes. 12(3), 5984-5995.AbstractArticlePDF
The dielectric properties of poplar wood (Populus deltoids cv. I-69/55) were measured using an Agilent network analyzer over the frequency range from 0.2 GHz to 20 GHz. The effects of moisture content, grain direction, temperature, and frequency on the dielectric constant and dielectric loss factor of wood were investigated. Regression equations were also established to predict the dielectric properties of wood having different grain directions and moisture contents. Results showed that the dielectric properties were strongly affected by the moisture content. As the moisture content increased from 0% to 100%, the dielectric constants of wood at longitudinal, radial, and tangential directions increased by 820.2%, 403.0%, and 434.0%, loss factors of wood at three directions increased by 8631%, 4949%, and 3404%, respectively. As frequency was increased, dielectric constant of wood decreased slowly; however, the loss factor decreased at the beginning and then increased. Dielectric properties of the wood also increased with increasing temperature. The dielectric constant in longitudinal directions was 1.2 times higher than the constant at tangential and radial directions, but the loss factor was 1.4 to 2.5 times higher. Regression equations were determined to fully describe the dielectric properties of wood at different grain dimensions and moisture contents.
- Researchpp 5996-6010Abdul Khalil, H. P. S., Tye, Y. Y., Ismail, Z., Leong, J., Saurabh, C. K., Lai, T. K., Chong, E. W. N., Aditiawati, P., Tahir, P. M., and Dungani, R. (2017). "Oil palm shell nanofiller in seaweed-based composite film: Mechanical, physical, and morphological properties," BioRes. 12(3), 5996-6010.AbstractArticlePDF
Composite films that utilize seaweed as a matrix and oil palm shell (OPS) nanoparticles as a reinforcing material were developed. The effects of loading OPS nanoparticle (0%, 1%, 5%, 10%, 20%, and 30%) into seaweed films were determined by analyzing the physical, mechanical, and morphological properties of the films. The seaweed-based film incorporated with OPS nanoparticles at a high concentration (20% w/w) achieved the highest tensile strength (44.8 MPa) and Young’s Modulus (3.13 GPa). However, the film’s hydrophobicity (contact angle = 47.3º) and percentage of elongation at break (2.10%) were reduced. Moreover, it was observed that excessive loading of nanofillers (> 20%) reduced the tensile strength and hydrophilicity of the film. This phenomenon was attributed to the agglomeration of OPS nanoparticles and the formation of large voids on the film surface. Thus, the relative effectiveness of the various tested nanofiller contents in enhancing the mechanical strength of the composite film were found to be ranked in the following order: 20%, 10%, 5%, 30%, and 1%.
- Researchpp 6011-6023Laskowska, A. (2017). "The influence of process parameters on the density profile and hardness of surface-densified birch wood (Betula pendula Roth)," BioRes. 12(3), 6011-6023.AbstractArticlePDF
This study examined the influence of temperature and time of treatment on the density profile and hardness of surface-densified birch wood (Betula pendula Roth). An analysis of the wood density profile was conducted on the basis of the following parameters: thickness, maximum density, and the distance between the maximum density and the wood surface. Depending on the technological parameters’ values, the degree of compression of the wood was 13% to 22%, and its maximum density was 808 kg/m3 to 994 kg/m3. As a result of the modification of birch wood at a temperature of 100 °C and 125 °C, the wood was densified on one side. As the temperature of the thermo-mechanical treatment was raised from 150 °C to 200 °C, the wood became densified on both sides. The maximum density of the wood increased gradually with the increase of the temperature of the press plate. The longer the time of thermo-mechanical treatment, the more distant the maximum density area was from the wood surface. Depending on the temperature and the time of treatment, the hardness of the surface-densified birch wood was 1.4 to 2.2 times greater than the hardness of non-densified wood.
- Researchpp 6024-6039Liu, Z., He, T., Lan, Y., Yang, X., Meng, J., and Chen, W. (2017). "Maize stover biochar accelerated urea hydrolysis and short-term nitrogen turnover in soil," BioResources, 12(3), 6024-6039.AbstractArticlePDF
The study was carried to determine the labile carbon contents in biochar pyrolyzed under different temperatures and its effect on urea hydrolysis rate. Corn stovers were pyrolyzed at highest temperature of 300°C, 500°C and 700 °C to produce fresh biochar. Soil incubation experiment was conducted with biochar application rate of 0% and 2% with presence of urea. The results showed that biochars accelerated urea hydrolysis, and high temperature pyrolyzed biochar have more significant effect on soil pH enhances and acceleration of urea hydrolysis than biochar pyrolyzed at low temperature. Moreover, biochar produced at 300°C contains relative high concentration of labile carbon, and 43-64% of labile carbons were oxidized within 40 days incubation. The labile carbon in biochars also leaded microbes thrives and resulted in accelerate short-term N turnover. i.e. at early stage of incubation, fresh biochar increased mineralization of soil N by 79-449 mg•kg−1, and matured biochar by 30-61 mg•kg−1, but microbial immobilization effect was observed in fresh biochar-amended soil at the end of incubation. We concluded that aged biochar is suitable for simultaneous soil amendment with urea rather than newly produced biochar as it can promote available N accumulation in short time thus increase the risk of inorganic nitrogen leaching loss.
- Researchpp 6040-6061Ramos-Carmona, S., and Pérez, J. (2017). "Effect of torrefied wood biomass under an oxidizing environment in a downdraft gasification process," BioRes. 12(3), 6040-6061.AbstractArticlePDF
The effect of composition and heating value of torrefied biomass under an oxidizing atmosphere at different conditions (180, 210, and 240 °C during 30, 75, and 120 minutes) was studied relative to downdraft gasification performance. An extended model for gasification in thermochemical equilibrium was used to evaluate the effect of pretreated biomasses, fuel-to-air equivalence ratio, and char byproduct production on the producer gas composition, reaction temperature, cold gas efficiency (CGE), and the engine fuel quality (EFQ). The model was validated with experimental data, reaching a global relative error of 8.5%. For raw or torrefied biomasses, with regard to char production, the CGE decreases if char increases; this is due to the fact that the process tends to combustion regimes when a lower amount of carbon is involved in the gasification reaction. Otherwise, the CGE and EFQ increase (up to 80% and 2.5 MJ/kg, respectively) if fuel-to-air ratio increases. With regard to the torrefied biomass, it is highlighted that CGE and EFQ increase from 77% to 82% and from 2.2 MJ/kg to 2.5 MJ/kg, respectively, when the torrefaction conditions (temperature and/or time) increase. This behavior is related to the increase of the autothermal zones in the gasification process and due to the higher heating value of torrefied biomass.
- Researchpp 6062-6081Zhang, L., Wan, J., Hu, Z., and Jiang, W. (2017). "Preparation and photocatalytic activity of TiO2-wrapped cotton nanofiber composite catalysts," BioRes. 12(3), 6062-6081.AbstractArticlePDF
A novel TiO2-wrapped nanofiber composite catalyst, which possessed a unique porous structure and mixed crystalline phase, was prepared by the combination of superficial sol–gel and post-calcination processes. By means of the superficial sol–gel process, TiO2 layers were deposited on the surface of each nanofiber-like cellulose fiber, and then the TiO2-wrapped nanofiber composite catalysts were calcined at different temperatures under a nitrogen atmosphere. With temperature increasing, the original cotton nanofiber composites were converted into porous carbon nanofiber catalysts wrapped by a TiO2 mixed crystalline phase, which was accompanied by a crystal transformation. The photocatalytic activity of the new catalysts was evaluated by the degradation of methylene blue (MB) under ultraviolet (UV) irradiation. The results demonstrated that the new catalysts had good photocatalytic ability, and the TNC-700 catalyst showed a superior photocatalytic ability compared with the other catalysts; the new catalysts had a unique porous structure, high specific surface area, and mixed crystalline phase. Additionally, the synergistic photocatalytic effect of the TiO2 and activated carbon nanofiber resulted in the efficient degradation of organic pollutants in water or air.
- Researchpp 6082-6093Zhang, J., Liang, J., Du, G., Zhou, X., Wang, H., and Lei, H. (2017). "Development and characterization of a Bayberry tannin-based adhesive for particleboard," BioRes. 12(3), 6082-6093.AbstractArticlePDF
A renewable bio-based thermosetting adhesive named tannin-furanic-formaldehyde (TFF) resin was synthesized using natural raw materials from crops and forest, such as furfuryl alcohol and bayberry tannin. The thermal properties of the adhesives were studied using differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and thermal gravimetric analysis (TGA). The structure of the TFF resin was characterized by electrospray ionization mass spectrometry (ESI-MS) and Fourier transform infrared (FTIR) spectroscopy. The results indicated that TFF resin was easily prepared. Moreover, it showed an excellent modulus of elasticity (MOE) and thermal resistance. Moreover, the cross-linking reaction of bayberry tannin, furfuryl alcohol, and formaldehyde under acid condition was established.
- Researchpp 6094-6108Yuan, M., Shi, H., Sun, Y., Niu, M., and Ping, Q. (2017). "Comparative study on the yield and characterization of hemicelluloses isolated with hydrothermal extract and catalyzed by acetic acid from acacia wood," BioRes. 12(3), 6094-6108.AbstractArticlePDF
To utilize hemicelluloses from biomass as a feedstock to produce various value-added products, the soluble hemicelluloses must be isolated from the liquid phase with a high yield and purity. In this study, acacia wood was extracted by hydrothermal treatment, catalyzed by acetic acid at 170 °C for different lengths of time, and then precipitated after concentration and mixing with ethanol. Acetic acid led to faster hydrolysis of hemicelluloses, a process that was confirmed by a larger amount of total saccharides than the controlled results. A yield of more than 90% oligosaccharides was achieved in the hydrolysate with 1% (w/w) acetic acid. The maximum precipitate yield obtained was reduced, but a faster increase was observed in the first 30 min at 170 °C depending on the utilization of acetic acid. Analysis of 13C nuclear magnetic resonance (13C NMR) confirmed that the side chains, such as arabinose linked on the xylan chain, were severely broken down, and more dissolved hemicelluloses bonded with lignin (LCC) were present in the precipitates with 1% (w/w) acetic acid. Based on gel permeation chromatography (GPC), a molecular weight of not less than 1900 is suggested when ethanol is used to precipitate the oligosaccharides from hydrolysate.