NC State
BioResources
  • Researchpp 6392-6404Flores-Hernández, M. A., Torres-Rendón, J. G., Jiménez-Amezcua, R. M., Lomelí-Ramírez, M. G., Fuentes-Talavera, F. J., Silva-Guzmán, J. A., and García Enriquez, S. (2017). "Studies on mechanical performance of wood-plastic composites: Polystyrene-Eucalyptus globulus Labill," BioRes. 12(3), 6392-6404.AbstractArticlePDF

    The effects of size and concentration of wood particles on the properties of composites, obtained by extrusion, were evaluated based on polystyrene and wood particles from Eucalyptus globulus Labill. Wood-plastic ratios were 10:90, 30:70, and 50:50 (weight / weight), and wood particles were retained in 40, 50, 65, and 100-mesh sieves. The density, flow index, water absorption, and the mechanical properties were evaluated. Scanning electron microscopy revealed poor adhesion between the wood particles and the polystyrene. The size and content of wood particles were found to have a strong influence on the mechanical properties of the composite. The introduction of the wood particles induced a reduction of the Young’s modulus, ultimate strength and deflection, as well as an increment in the elongation at break. The impact resistance also increased with the size and concentration of the wood particles. Furthermore, with increasing content of wood particles, the value of the melt flow index decreased and the water absorption rose.

  • Researchpp 6405-6417Xu, M., Xing, L., Zhang, Q., and Pu, J. (2017). "Ultrasonic-assisted method of graphite preparation from wheat straw," BioRes. 12(3), 6405-6417.AbstractArticlePDF

    Graphite production was achieved unexpectedly in the course of demonstrating a new ultrasonic-assisted wheat straw pulping method at room temperature and at atmospheric pressure. The graphite material was found in the ultrasonic-assisted pulp (UP) ash, as shown by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and TEM analysis. UP ash contained both inorganic and organic components. The total content of inorganic components in the ash was 81.9%, while the content of organic component (graphite material) was 18.1%. The graphite content in the pulp was calculated to be approximately 4.5%. This work describes a new meaningful approach for the facile preparation of graphite materials. The graphitization was based on the ultrasonic cavitation mechanism of extreme condition, while the process would be divided into three steps, degradation of lignin, graphene formation, and graphitization process.

  • Researchpp 6418-6426Lee, M., Jang, J., Lee, S., and Park, S. (2017). "Effect of loess treatment and carbonization on the hygric performance of medium-density fiberboard," BioRes. 12(3), 6418-6426.AbstractArticlePDF

    The level of relative humidity is one of the key parameters in evaluating indoor air quality and comfort. In principle, humidity can be kept more uniform over time by use of materials that adsorb moisture from the air reversibly. This study was conducted to investigate the effect of loess treatment and carbonization on the hygric performance of medium-density fiberboard (MDF). The loess treatment was conducted with different sizes of loess particle prepared by a high-pressure homogenizer. After loess treatment on the surface of the MDF, it was carbonized at high temperature (600 °C). Loess is an abundant mineral high in Si content, which has high moisture absorption capacity, which remained after the carbonization process. The study also found that the loess treatment positively affected the hygric performance of carbonized MDF (c-MDF). The hygric performance of c-MDF almost doubled after the loess treatment compared with the non-treated c-MDF. However, the nano conversion of loess did not influence the hygric performance. Loess-treated carbonized MDF could be used as a humidity controller in buildings.

  • Researchpp 6427-6433Lee, M., Jang, J., Lee, S., and Park, S. (2017). "Comparison of the radon absorption capacity of carbonized boards from different wood-based panels," BioRes. 12(3), 6427-6433.AbstractArticlePDF

    The radon absorption performance was determined and compared for different types of carbonized boards to establish effective carbonized boards. Moreover, the absorption mechanism of carbonized boards was investigated by specific surface area and pore size in each of the carbonized boards. The radon absorption performance was ranked in the following order: ash (87%), medium-density fiberboard (MDF, 83%), oriented strand board (OSB, 82%), particleboard (PB, 77%), and plywood (PW, 67%). The correlation between radon absorption capacity and surface area or pore volume showed that a higher surface area or pore volume had higher radon absorption performance. However, the highest surface area and pore volume was detected on carbonized MDF, which had a radon absorption performance that was 5% less than carbonized ash board. Therefore, the surface area and pore volume as well as other factors affected the absorption performance.

  • Researchpp 6434-6445Hou, Y., Yan, S., Guo, X., and Di, M. (2017). "Combined surface treatment of polyethylene wood-plastic composites to achieve rapid bonding with desired adhesion properties," BioRes. 12(3), 6434-6445.AbstractArticlePDF

    To achieve rapid bonding with desired adhesion properties, a combined treatment of sanding then coating with polyisocyanate, followed by plasma discharge was implemented on the surfaces of polyethylene wood-plastic composites (WPCs). The surface properties of polyethylene WPCs were studied by evaluating the contact angle and bonding strength, as well as analyzing it via Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The results indicated that the shear strength and durability of the bonding joints of polyethylene WPCs increased considerably due to the synergetic effect from the surface treatment. Thus, a rapid bonding with desired adhesion properties of polyethylene WPCs was achieved. The roughness and the oxygen content on the composites’ surface increased after the combined treatment. Polar functional groups, such as –OH, –C=O, and –O–C=O, formed on the surface. At the same time, the presence of –NCO and –NH functionalities, generated during the combined treatment, showed that chemical bondings between polyisocyanate and the wood fibers of the composites occurred. The changes on the surface properties, such as roughness, wettability, as well as formation of chemical groups, substantially affected the adhesion properties of the bonding joint for polyethylene WPCs.

  • Researchpp 6446-6457Zhang, H., Pizzi, A., Lu, X., and Wang, Z. (2017). "Study of the end-grain butt joints obtained by friction welding of moso bamboo," BioRes. 12(3), 6446-6457.AbstractArticlePDF

    End-grain-to-end-grain welding has been the object of considerable study in the authors’ laboratory, but successful experiments have been hindered by wood defibration. End-grain butt joints obtained by friction welding with moso bamboo showed relatively good experimental results compared to beech, oak, and spruce. The average compression shear strength of the welded joints reached 5.81 MPa, and the departure of the bamboo fibers could not be observed during the welding process. A study of the microstructure of the welded surface revealed that during the welding process, hard vascular bundles within the fibers became prominent on the welded surface and acted similarly to a brush. These bundles dissipated lateral friction and protected the bamboo from cracking in the process.

  • Researchpp 6458-6470Cichy, W., Witczak, M., and Walkowiak, M. (2017). "Fuel properties of woody biomass from pruning operations in fruit orchards," BioRes. 12(3), 6458-6470.AbstractArticlePDF

    Biomass has become a major source of renewable energy. The basic fuel properties of woody biomass from orchards were evaluated on the following fruit tree wood obtained from pruning operations: ‘Reliance’ peach, ‘Burlat’ cherry, ‘Packham’s Triumph’ pear, ‘Early Geneva’ apple, hazel (Polish variety Halle), ‘Hargrand’ apricot, walnut, domestic plum (Polish variety Węgierka), and sour cherry (variety Ujfehertoi fürtos). The research included the wood and bark of the trunk, whole limbs, and branches. Gross calorific value for the majority tested biomass ranged from 19.2 to 21.3 MJ / kg, which is typical for wood and bark of broadleaf species. The low content of chlorine and sulfur in the analyzed samples would contribute to low corrosion in boilers and a low atmospheric pollution factor for generated sulfur oxides and hydrogen chloride. Properties of fuel biomass obtained from pruning operations were not noticeably different from the typical properties of solid biofuels derived from woody forest biomass. Based on these results, biomass from orchards can be a substitute for raw forest material suitable for energy use.

  • Researchpp 6471-6489Rosero-Alvarado, J., Hernández, R., and Riedl, B. (2017). "Effects of fire-retardant treatment and burl wood structure on three-dimensional changes of sandwich panels made from walnut decorative veneer," BioRes. 12(3), 6471-6489.AbstractArticlePDF

    The effects of a fire-retardant treatment and burl wood structure on the three-dimensional changes of aircraft sandwich panels were evaluated. Unvarnished and varnished panels with an outer decorative layer made from walnut burl (Juglans hindsii L.) were studied. Half of the samples from each type of panel received a fire-retardant treatment (phosphate-based) on all three layers of the decorative plywood. The other half had the two inner layers treated and the outer layer was left untreated. Three different wood areas formed by rotary peeling and by the grain orientation from the burl structure were identified and their veneer surfaces were separately studied. Samples pre-conditioned at 20 °C and 40% relative humidity (RH) underwent adsorption (25 °C, 90% RH) and then desorption (25 °C, 40% RH) treatments. Changes in the moisture content (MC), swelling, shrinkage, roughness, and waviness were measured after each moisture exposure condition. The results showed that the fire-retardant treatment significantly increased the MC, swelling, shrinkage, roughness, and waviness of the unvarnished and varnished panels. This treatment also affected the roughness and waviness of the burl wood structure for the unvarnished panels. The effect of this anatomical feature was not noticeable in the varnished panels.

  • Researchpp 6490-6503Skrobot III, F., Diehl, S. V., and Borazjani, H. (2017). "Mycotoxin production by Stachybotrys chartarum on water-damaged building materials," BioRes. 12(3), 6490-6503.AbstractArticlePDF

    The major question after a flooding event is whether to remove or remediate the building materials so that potentially harmful mold growth and their by-products cannot cause serious health problems for susceptible individuals. The purpose of this study was to determine the growth of Stachybotrys chartarum and corresponding production of macrocyclic trichothecenes on different components of a residential wall up to 65 days after a simulated flood event. Small-scale residential walls constructed of fiberglass batt insulation, oriented strandboard, gypsum wallboard, and lumber were destructively sampled at four time points. All four building materials contained notable levels of macrocyclic trichothecenes on all collection days. The highest concentrations of macrocyclic trichothecenes were on the paper siding of the gypsum wallboard, followed by the paper siding of the batt insulation and wood lumber. There was a significant increase in trichothecene concentration over time, particularly on the gypsum. The DNA concentrations of the mold were significantly higher on the batt insulation than on the wood products, and the mold concentrations also increased over time on the batt insulation and gypsum, but not on the wood products. It was concluded that if a flooding event should occur, the insulation and gypsum should be removed from the home and the remaining materials should be remediated.

  • Researchpp 6504-6517Park, Y. C., Yoon, J. J., Kim, S. H., Kim, T. H., and Kim, J. S. (2017). "Two-stage flow-through pretreatment of Helianthus tuberosus residue for enzymatic production of fermentable sugar by alkaline and acidic solutions," BioRes. 12(3), 6504-6517.AbstractArticlePDF

    A response surface methodology (RSM) tool with the Box-Behnken design was used to determine the optimum pretreatment conditions of Helianthus tuberosus residue for the enzymatic production of fermentable sugar with aqueous ammonia and sulfuric acid solutions, for various parameters such as pretreatment solution concentration, temperature, and reaction time. The pretreatment of biomass was performed using these optimized parameters in aqueous ammonia and sulfuric acid solution, followed by hot water, under the same conditions. The process was then performed by changing the sequence.

@BioResJournal

55 years ago

Read More