NC State
BioResources
  • Reviewpp 1403-1418Ioelovich, M. (2008). "Cellulose as a nanostructured polymer: A short review," BioRes. 3(4), 1403-1418.AbstractPDF
    Cellulose has a complex, multi-level supermolecular architecture. This natural polymer is built from superfine fibrils having diameters in the nano scale, and each such nanofibril contains ordered nanocrystallites and low-ordered nano-domains. In this review, the nano-structure of cellulose and its influence on various properties of the polymer is discussed. In particular, the ability of nano-scale crystallites to undergo lateral co-crystallization and aggregation, as well as to undergo phase transformation through dissolution, alkalization, and chemical modification of cellulose has been the subject of investigation. The recent investigations pave the way for development of highly reactive cellulosic materials. Methods for preparation nanofibrillated cellulose and free nano-particles are described. Some application areas of the nanostruc-tured and nano-cellulose are discussed.
  • Reviewpp 1419-1491Hubbe, M. A., and Rojas, O. J. (2008). "Colloidal stability and aggregation of lignocellulosic materials in aqueous suspension: A review," BioRes. 3(4), 1419-1491.AbstractPDF
    Aqueous dispersions of lignocellulosic materials are used in such fields as papermaking, pharmaceuticals, and preparation of cellulose-based composites. The present review article considers published literature dealing with the ability of cellulosic particle dispersions (fiber, fines, nanorods, etc.) to either remain well dispersed or to agglomerate in response to changes in the composition of the supporting electrolyte solution. In many respects, the colloidal stability and coagulation of lignocellulosics can be understood in terms of well-known concepts, including effects due to osmotic pressure arising from overlapping electrostatic double layers at the charged surfaces. Details of the morphology and surface properties of lignocellulosic materials give rise to a variety of colloidal behaviors that make them unique. Adjustments in aqueous conditions, including the pH, salt ions (type and valence), polymers (charged or uncharged), and surfactants can be used to control the dispersion stability of cellulose, lignin, or wood-extractive materials to serve a variety of applications.
  • Reviewpp 341-369Gronowska, M., Joshi, S., and MacLean, H. L. (2009). "A review of U.S. and Canadian biomass supply studies," BioRes. 4(1), 341-369.AbstractPDF
    An improved understanding of lignocellulosic biomass availability is needed to support proposed expansion in biofuel production. Fifteen studies that estimate availability of lignocellulosic biomass quantities in in the U.S. and/or Canada are reviewed. Sources of differences in study methods and assumptions and resulting biomass quantities are elucidated. We differentiate between inventory studies, in which quantities of biomass potentially available are estimated without rigorous consideration of the costs of supply, versus economic studies, which take into consideration various opportunity costs and competition. The U.S. economic studies, which included reasonably comprehensive sets of biomass categories, estimate annual biomass availability to range from 6 million to 577 million dry metric tonnes (dry t), depending on offered price, while estimates from inventory studies range from 190 million to 3849 million dry t. The Canadian inventory studies, which included reasonably comprehensive sets of biomass categories, estimate availability to range from 64 million green t to 561 million dry t. The largest biomass categories for the U.S. are energy crops and agricultural residues, while for Canada they are expected to be energy crops and logging residues. The significant differences in study estimates are due in large part to the number of biomass categories included, whether economic considerations are incorporated, assumptions about energy crop yields and land areas, and level of optimism of assumptions of the study.
  • Reviewpp 370-404Esteves, B. M., and Pereira, H. M. (2009). "Wood modification by heat treatment: A review," BioRes. 4(1), 370-404.AbstractPDF
    Wood heat treatment has increased significantly in the last few years and is still growing as an industrial process to improve some wood properties. The first studies on heat treatment investigated mainly equilibrium moisture, dimensional stability, durability and mechanical properties. Mass loss, wettability, wood color, and chemical transformations have been subsequently extensively studied, while recent works focus on quality control, modeling, and study the reasons for the improvements. This review explains the recent interest on the heat treatment of wood and synthesizes the major publications on this subject on wood properties, chemical changes, wood uses, and quality control.
  • Reviewpp 405-451Hubbe, M. A., Chen, H., and Heitmann, J. A. (2009). "Permeability reduction phenomena in packed beds, fiber mats, and wet webs of paper exposed to flow of liquids and suspensions: A review," BioRes. 4(1), 405-451.AbstractPDF
    Filter media, including those prepared from cellulosic materials, often suffer from permeability loss during continued use. To help understand such issues, one can take advantage of an extensive body of related research in such fields as industrial filtration, water purification, enhanced oil recovery, chromatography, paper manufacture, and the leaching of pollutants from impoundments. Though the mechanisms that appear to govern permeability-loss phenomena depend a lot on the details of various applications, the published research has revealed a number of common features. In particular, flow through a porous bed or fiber mat can be markedly reduced by deposition of particles or colloidal matter in positions that either block or partially restrict fluid flow. Progress has been achieved in the development of mechanistic models, as well as the use of such models in numerical simulations to explain various experimental findings. Further research of this type needs to be applied to cellulosic materials, which tend to be much more elongated in comparison to the bed materials and suspended matter considered most often by most researchers active in research related to permeability loss.
  • Reviewpp 825-834Han, S., Li, J., Zhu, S., Chen, R., Wu, Y., Zhang, X., and Yu, Z. (2009). "Potential applications of ionic liquids in wood related industries," BioRes. 4(2), 825-834.AbstractPDF
    The use of ionic liquids (ILs) has provided a new platform for efficient utilization of wood. In this paper, applications of ILs in wood-related industries are reviewed. First, the dissolution of wood in ILs and its application are described. Then the ILs used for wood preservation and improvement of wood anti-electrostatic and fire-proof properties are illustrated. Finally, “green” wood processing with ILs is discussed. Although some basic studies of ILs, such as their economical syntheses and toxicology are eagerly needed and some engineering problems still exist, research for application of ILs in wood-related industries has made great progress in recent years.
  • Reviewpp 835-849Lu, J., Chorney, M., and Peterson, L. (2009). "Sustainable trailer flooring," BioRes. 4(2), 835-849.AbstractPDF
    Different trailer flooring materials, including wood-based, aluminum, steel, and synthetic plastic floors, were evaluated in accordance with their durability and sustainability to our natural environment. Wood-based trailer flooring is an eco-friendly product. It is the most sustainable trailer flooring material compared with fossil fuel-intensive steel, aluminum, and plastics. It is renewable and recyclable. Oak, hard maple, and apitong are strong and durable hardwood species that are currently extensively used for trailer flooring. For manufacture, wood-based flooring is higher in energy efficiency and lower in carbon emission than steel, aluminum and plastics. Moreover, wood per se is a natural product that sequesters carbon. Accordingly, using more wood-based trailer flooring is effective to reduce global warming.
  • Reviewpp 850-906Hubbe, M. A., Nanko, H., and McNeal, M. R. (2009). "Retention aid polymer interactions with cellulosic surfaces and suspensions: A review," BioRes. 4(2), 850-906.AbstractPDF
    Retention aids can be defined as very-high-mass, water-soluble polymers that are added to cellulosic fiber slurries before the formation of paper in order to improve the efficiency with which fine particles, including cellulosic fines, are retained in the paper product. Optimization of retention aid performance can be a key to achieving efficient and environmentally responsible papermaking objectives. This article reviews various published theories related to retention aid use. Findings related to three main classes of retention aid polymers are considered: cationic acrylamide copolymers (cPAM), anionic acrylamide copolymers (aPAM), and polyethylene oxide (PEO). While many aspects of the interactions of each of these classes of retention aid products can be understood based on colloid chemistry principles, further research is needed in order to more fully bridge the gap between theory and practice.
  • Reviewpp 1190-1209Shen, J., Song, Z., Qian, X., and Liu, W. (2009). "Modification of papermaking grade fillers: A brief review," BioRes. 4(3), 1190-1209.AbstractPDF
    The use of fillers in paper products can provide cost and energy savings, improved paper properties, increased productivities, and specifically desired paper functionalities. There are many problems associated with the use of fillers, such as unsuitability of calcium carbonate fillers in acid papermaking, negative effects of filler loading on paper strength, sizing, and retention, and tendencies of fillers to cause abrasion and dusting. In order to solve these problems and to make better use of fillers, many methods have been proposed, among which filler modification has been a hot topic. The available technologies of filler modification mainly include modification with inorganic substances, modification with natural polymers or their derivatives, modification with water-soluble synthetic polymers, modification with surfactants, modification with polymer latexes, hydrophobic modification, cationic modification, surface nano-structuring, physical modification by compressing, calcination or grinding, and modification for use in functional papers. The methods of filler modification can provide improved acid tolerant and optical properties of fillers, enhanced fiber-filler bonding, improved filler retention and filler sizabilities, alleviated filler abrasiveness, improved filler dispersability, and functionalization of filled papers. Filler modification has been an indispensable way to accelerate the development of high filler technology in papermaking, which is likely to create additional benefits to papermaking industry in the future.
  • Reviewpp 1210-1221Muszyński, L. (2009). "Imaging wood plastic composites (WPCs): X-ray computed tomography, a few other promising techniques, and why we should pay attention," BioRes. 4(3), 1210-1221.AbstractPDF
    Wood plastic composites are complex, anisotropic, and heterogeneous materials. A key to increasing the share of the WPC materials in the market is developing stronger, highly engineered WPCs characterized by greater structural performance and increased durability. These are achieved by enhanced manufacturing processes, more efficient profile designs, and new formulations providing better interaction between the wood particles and the plastic matrix. Significant progress in this area is hard to imagine without better understanding of the composite performance and internal bond durability on the micro-mechanical level, and reliable modeling based on that understanding. The objective of this paper is to present a brief review of promising material characterization techniques based on advanced imaging technologies and inverse problem methodology, which seem particularly suitable for complex heterogeneous composites. Full-field imaging techniques and specifically X-ray computed tomography (CT) combined with numerical modeling tools have a potential to advance the fundamental knowledge on the effect of manufacturing parameters on the micromechanics of such materials and their response to loads and environmental exposure.

@BioResJournal

54 years ago

Read More