Volume 11 Issue 4
Latest articles
- Researchpp 9880-9895Gaff, M., Ruman, D., Borůvka, V., and Záborský, V. (2016). "Impact bending strength as a function of selected factors," BioRes. 11(4), 9880-9895.AbstractArticlePDF
This article examines the influence of selected factors (wood species, densification, thickness, glue type, and number of cycles) on the impact bending strength (IBS) of solid and laminated wood. The evaluated properties were measured on samples of European beech (Fagus sylvatica L.) and common aspen (Populus tremula L.). Two types of glues were used for laminated wood: polyvinyl acetate (PVAc) and polyurethane (PUR). The highest IBS values were recorded in laminated beech specimens glued with polyvinyl acetate glue that were not subjected to cyclical loading.
- Researchpp 9896-9911Hu, X. M., Wang, F. L., Ma, H. H., Zhang, B. X., Gao, Y. F., and Hu, B. A. (2016). "Factors governing the pretreatment process of lignocellulosic biomass in an acidic pyrrolidonium ionic liquid," BioRes. 11(4), 9896-9911.AbstractArticlePDFIonic liquid (IL)-assisted pretreatment is an important step in biochemical conversion of lignocellulosic biomass into biofuels. Design for low-cost ILs that efficiently work at a relatively low pretreatment temperature with a short processing time is of great interest. In this work, a functional acidic ionic liquid, 1-H-N-methyl-2-pyrrolidonium chloride ([Hnmp]Cl), was prepared by a simple synthetic procedure in a cost-effective manner and was then investigated for use in the pretreatment of lignocellulosic biomass. Factors including temperature, time, ratio of biomass to ionic liquid, and water content were studied to determine their impact on the pretreatment of lignocellulose; 91.39% of lignin content was recovered when the corn stalk was pretreated by pure [Hnmp]Cl at 100 °C for 45 min with a biomass loading of 5%. The highest glucose yield attained was 93.20% and the highest cellobiose yield was 18.76%, when the ratio of biomass to water was kept at 1:4. The pretreatment efficacy was dependent on the pretreatment temperature and processing time, which was more efficient for pure ionic liquid with respect to lignin recovery from lignocelluloses. However, more efficient enzymatic saccharification of cellulose-rich materials was achieved with aqueous ionic liquid.
- Researchpp 9912-9921Sládková, A., Benedekov, M., Stopka, J., Šurina, I., Ház, A., Strižincová, P., Čižová, K., Škulcová, A., Burčová, Z., Kreps, F., Šima, J., and Jablonský, M. (2016). "Yield of polyphenolic substances extracted from spruce (Picea abies) bark by microwave-assisted extraction," BioRes. 11(4), 9912-9921.AbstractArticlePDF
Closed-system microwave-assisted extraction was applied to extract total phenolics from spruce (Picea abies) bark, using 96.6% ethanol as an extractant. The influence of particle size (0.3; 1.0; 2.5 mm), time (3 to 20 min), and temperature (60; 80; 100 °C) on polyphenol recovery was also studied. Higher extraction temperature and smaller particle size resulted in a higher yield of extracted polyphenols. However, the effect of extraction time on yield was more complicated. The effect of all three factors is tentatively explained.
- Researchpp 9922-9939Enriquez, E., Mohanty, A. K., and Misra, M. (2016). "Alkali and peroxide bleach treatments on spring harvested switchgrass for potential composite application," BioRes. 11(4), 9922-9939.AbstractArticlePDF
Natural fibers are desirable in composite applications for their sustainability. However, improving upon the interfacial adhesion between the fiber and matrix is a major challenge. Chemical surface modification is a method used to improve compatibility of the fiber by exposing or adding functionalities to the surface, and removing non-cellulosic components in order to enhance mechanical and thermal properties. Switchgrass, an abundant natural fiber, has potential for use as a reinforcing material in composite applications. Surface modifications were conducted on switchgrass via alkali and peroxide bleaching treatments in order to remove surface impurities and create a rougher surface, as observed in scanning electron micrographs. Fourier transform infrared spectroscopy and compositional analysis showed that non-cellulosic components were reduced following the alkali and bleach treatments. Reduction of hemicellulose and lignin improved thermal stability by increasing the onset temperature of degradation from 258 °C to 289 and 281 °C for alkali and bleach treatments, respectively. The crystallinity index (CI) of untreated and treated fibers was calculated from x-ray diffraction analyses. An increase of 48% and 38% for the alkali and bleach treated fibers, respectively, was seen in the CI, compared to the untreated switchgrass. The surface of switchgrass was successfully modified using alkali and peroxide bleach treatments for composite applications.
- Researchpp 9940-9955Liu, L., Li, P., Qin, G., Yan, Y., Li, Y., Yao, J., and Wang, H. (2016). "Conversion of corn stalk to ethanol by one-step process using an alcohol dehydrogenase mutant of Phanerochaete chrysosporium," BioRes. 11(4), 9940-9955.AbstractArticlePDF
The potential of Phanerochaete chrysosporium in ethanol fermentation was evaluated. During the initial submerged cultivation, 1.76 g/L ethanol was obtained using glucose as substrate. After mutation, the ethanol concentration of an alcohol dehydrogenase (ADH) mutant reached 5.02 g/L. Both base transition and nine-base frame shift mutation occurred in the ADH gene of the mutant, changing the secondary and tertiary structures of ADH, as well as increasing the ADH activity during cultivation. Moreover, P. chrysosporium converted corn stalk to ethanol by a one-step process. After statistical optimizations, 0.26 g/g•substrate of ethanol yield was obtained on day 10. During the fermentation, the maximum lignin peroxidase, Mn-dependent peroxidase, and cellulase activities were 29.0 U/L, 256.5 U/L, and 40 U/mL, respectively, thus explaining why the fungus directly ferments corn stalk to ethanol. This study is the first report of the conversion of corn stalk without pretreatment to ethanol using a white-rot fungus.
- Researchpp 9956-9969Zhang, J., Du, M., and Hu, L. (2016). "Factors influencing polyol liquefaction of nut shells of different Camellia species," BioRes. 11(4), 9956-9969.AbstractArticlePDF
The liquefaction rates and kinetics of nut shells of different Camellia species in PEG400/glycerol/H2SO4 liquefying solvent were investigated. Changes in major components including cellulose, hemicellulose, and lignin as well as cellulose crystallinity of the nut shells were determined. The compositions of the liquefaction residues were analyzed. Results indicated that, under the same conditions, the liquefaction rates of nut shells of different Camellia species were noticeably different and the PEG400/glycerol/H2SO4 liquefaction agent was not suitable for the liquefaction of the nut shells of all Camellia species. The burst liquefaction of Camellia nut shells (CNSs) that occurred during the first stage was due to the rapid degradation of hemicellulose, acid-soluble lignin, and amorphous cellulose. The liquefaction during the second stage became very slow, mostly because the swelling and decomposition of crystalline cellulose was very difficult to achieve with the liquefying agent and the liquefaction products inhibited liquefaction at later stages. The liquefaction residues of CNSs were composed of crystalline cellulose, small amounts of hemicellulose, acid-insoluble lignin, and ash. Ash was partially dissolved in the liquefying agent. The liquefaction rates of all CNSs tested in this study showed linear relationships with time, with coefficients of determination (R2) greater than 0.7082, indicating that the liquefaction of CNS was a pseudo-first-order reaction.
- Researchpp 9970-9985Fu, X., and Hu, Y. (2016). "Comparison of reactor configurations for biogas production from rapeseed straw," BioRes. 11(4), 9970-9985.AbstractArticlePDF
To investigate the effects of reactor configurations on the anaerobic digestion performance of agricultural residue rapeseed straw, semi-continuous, one-stage, continuously stirred tank reactors (CSTR) and batch, two-stage, leach bed-upflow anaerobic sludge blanket (UASB) reactors were operated at the same hydraulic retention time (HRT) (30 days) and target organic loading rate (OLR) (3.0 gVS/L.d). In the continuously loaded CSTR, the specific methane yields did not substantially change as the OLR increased from 1.5 gVS/L.d to 3.0 gVS/L.d during the four periods. Conversely, the specific methane yields in the batch-fed leach bed-UASB increased considerably with the increase in OLR. The leach bed reactor contributed 75% of the total yield, while the UASB reactor contributed only 25% of the total yield. The total specific methane yields were 108 mL/gVS and 160 mL/gVS for the leach bed-UASB and CSTR, respectively, while the volatile solid (VS) reductions of the rapeseed straw were 27.1% and 36.6%, respectively. The results indicated that the process performance was more efficient in the CSTR than in the leach bed-UASB for the digestion of rapeseed straw. Biogas production was clearly affected by the reactor configurations.
- Researchpp 9986-10001Chen, Q., Zhang, R., Wang, Y., Wen, X., and Qin, D. (2016). "The effect of bamboo charcoal on water absorption, contact angle, and the physical-mechanical properties of bamboo/low-density polyethylene composites," BioRes. 11(4), 9986-10001.AbstractArticlePDF
The use of bamboo charcoal (BC) was investigated as a filler in bamboo-plastic composites (BPCs) to achieve improved water resistance, physical-mechanical properties, and reduced hydrophilicity. The influence of the BC content and size on the water absorption, contact angle, density, and mechanical properties of bamboo flour/low-density polyethylene (LDPE) composites was tested. Scanning electron microscopy was used to analyse fractured and flat composite surfaces. The results indicated that the BC increased water resistance, achieving optimal results at 8% content. The BC particles that ranged in size from 60 to 100 mesh were more water-resistant than other sized BC. The water contact angle increased with an increase in the BC content or a decrease in the particle size. These results indicated that BC reduced the composite hydrophilicity and that the smaller BC particles improved this effect. The BC strongly connected with the LDPE composites, and the BC contents below 12% improved the flexural properties and increased the density of the BPCs. Also, the impact strength of the BPCs decreased dramatically with a decrease in the BC particle size. These results demonstrated that the integration of BC with BPCs resulted in strengthened water resistance and physical-mechanical properties and reduced hydrophilicity.
- Researchpp 10002-10013Stombock, L. B., Jeremic-Nikolic, D., Baldwin, B., Borazjani, H., and Diehl, S. V. (2016). "Bioremediation of oriented strand board (OSB) process wastewater," BioRes. 11(4), 10002-10013.AbstractArticlePDF
This study investigated the use of bioreactors and constructed wetlands to remediate oriented strand board (OSB) process wastewater. The first study evaluated the use of free cell bioreactors to reduce the biological oxygen demand (BOD). Control samples had significantly higher BOD levels than other treatments, and air+bacteria+nutrients treatment achieved significantly lower in BOD than air-only. Toxicity, total phenol, and total organic carbon concentrations decreased in all treatments. The initial constructed wetland was a screening study to determine which plants could acclimate to OSB process water. Plants that survived were placed into a floating constructed wetland (water hyacinth) or an emergent wetland (soft rush and Chinese water chestnut). A significant decrease in BOD occurred between days 15 and 30, with the emergent wetlands dropping by 51.7% and the floating wetlands by 52.7%. Toxicity, total phenol, and total organic carbon concentrations decreased in all treatments. This research suggests that an OSB facility may want to have an aerated pond that then feeds a constructed wetland. This could not only provide a means to treat and dispose of the wastewater in an environmentally favorable manner, but also provides the secondary benefits of a wetland and its associated land enrichment.
- Researchpp 10014-10029Zhang, X., Tan, X., Xu, Y., Wang, W., Ma, L., and Qi, W. (2016). "Preparation of core shell structure magnetic carbon-based solid acid and its catalytic performance on hemicellulose in corncobs," BioRes. 11(4), 10014-10029.AbstractArticlePDF
Solid acid catalysts show good catalytic depolymerization behavior for lignocellulose. A stable core-shell structured magnetic solid acid catalyst (MSAC), Fe3O4/C-SO3H, was prepared from glucose, concentrated sulfuric acid, and modified magnetic particles of Fe3O4, which was used as the core. The effects of the carbonization and sulfonation processes on the activity of the catalyst were investigated. The results showed that preparation conditions had great influence on the quantity of the acidic groups (sulfonic, carboxyl, and hydroxyl groups) and the stability of magnetic catalysts. The best preparation conditions for MSAC were 3 h of carbonization time, 450 °C as the carbonization temperature, 9 h of sulfonation time, and 90 °C as the sulfonation temperature. Its surface topography, functional group, chemical composition, and magnetic properties were characterized by analysis instrument. Furthermore, the catalyst was stably dispersed in the reaction system, quickly separated from the reaction system using an external field, and reused many times; 44.3% of xylose yield was obtained at 160 °C for 16 h. The catalyst was used repeatedly more than 3 times, and the recovery over 89%. The depolymerization of corncobs was achieved by magnetic catalyst, representing the depolymerization characteristics of real lignocellulose. This data can be used as a reference for the subsequent use of biomass resource.