Volume 6 Issue 1
Latest articles
- Researchpp 570-583Mocchiutti, P., Galván, M. V., Inalbon, M. C., and Zanuttini, M. A. (2011). "Improvement of paper properties of recycled unbleached softwood kraft pulps by poly(allylamine hydrochloride), BioRes. 6(1), 570-583.AbstractArticlePDF
Polyelectrolytes containing amine functional groups such as PAH (poly(allylamine hydrochloride)) can be useful, under certain conditions, for improving paper strength. In this work, the charge density of PAH was determined at different pH and ionic strengths; PAH adsorption onto the cellulosic fibers was characterized, and the effects of low PAH dosage on the papermaking properties were evaluated. It was found that the ionization of PAH is complete in acid media, but it is partial and depends on the ionic strength in neutral media. The adsorption isotherms of PAH on a recycled pulp from kraft liner allowed us to determine the amount needed to saturate the adsorption capacity of the fibers. For the three ionic strengths analyzed, the swelling of the fibers decreased when PAH was added in an amount corresponding to saturation (0.23% PAH on dried pulp). Nevertheless, the swelling was recovered when the amount of PAH was the double the saturation level (0.46% PAH on dried pulp). At these levels of addition, the papermaking properties were clearly improved, especially compressive strengths SCT (short compressive test) and CMT (concora medium test). The Page equation of tensile strength showed that PAH improved the shear bond strength, while the relative bonding area slightly decreased.
- Researchpp 584-593Kord, B., Ismaeilimoghadam, S., and Malekian, B. (2011). "Effect of immersion temperature on the water uptake of polypropylene/ wood flour/ organoclay hybrid nanocoposite," BioRes. 6(1), 584-593.AbstractArticlePDF
Polypropylene/wood flour/organoclay hybrid nanocomposites were melt-compounded in an internal mixer at 190 oC and 60 rpm rotor speed. Then samples were fabricated by injection molding. Effects of immersion temperature on the water uptake of hybrid nanocomposite were investigated. To meet this objective, water absorption of samples was determined after 24 h immersion in distilled water at different temperatures (25, 50, 75, and 100 °C). Results indicated that immersion temperature had a significant influence on the water absorption of composites. By increasing the temperature, water absorption increases as well. The maximum water absorption of composite is decreased by increasing the nanoclay and compatibilizer content. The morphology of nanoclay was determined by X-ray diffraction (XRD) and transmission electron microscopy. The effect of morphology on water absorption was also evaluated. Due to inadequate compatibilizer, exfoliated morphology of nanoclay was not obtained, but there was evidence of intercalation. The order of intercalation for samples containing 3 phc was higher than that of 6 phc at the same PP-g-MA content due to some agglomerations of organoclay.
- Researchpp 606-614Wang, J., Li, J., Li, S., Freitang, C., and Morrell, J. J. (2011). "Antifungal activities of Cunninghamia lanceolata heartwood extractives," BioRes. 6(1), 606-614.AbstractArticlePDF
Three extractives from China-fir were obtained by a sequential extraction processes with hexane, ethyl acetate, and methanol. The components of the three extractives were analyzed: (1) The gas chromatography-mass spectrometry (GC-MS) analysis showed that in addition to the presence of cedrol, naphthalenes comprised a relatively large percentage of both the hexane extract (10.39%) and the ethyl acetate extract (9.43%). (2) Total phenolic contents analysis showed that phenols took up 6.66 % of the ethyl acetate extract and 22.8% of the methanol extract. All extracts, even with low concentrations, presented fair antifungal activities against two white-rot fungi, Trametes versicolor and Irpex lacteusand two brown-rot fungi, Postia placenta and Gloeophyllum trabeum. Cedrol and naphthalenes were partly responsible for the bioactivities. The synergistic effect of phenols and antifungal compounds also contributed to the wood decay resistance.
- Researchpp 594-605Zeng, J.-S., Chen, K.-F., and Li, J. (2011). "Study of the bulk density of high consistency pulp and engineering application in the bleaching tower," BioRes. 6(1), 594-605.AbstractArticlePDF
From experimental simulation of the process of high consistency pulp moving in a bleaching tower, the aerated bulk density and packed bulk density were measured and studied by using a self-made experimental system. The scattered experimental data – pressure p, and bulk density difference, which was between packed bulk density and aerated bulk density (ρ-ρ0) – were fitted by using Matlab software, and some good-fitting regression curves and equations were obtained. The results showed there was a break point W in the regression curves; within the range 0 £ p £ W the relationship between (ρ-ρ0) and p was a linear function, while for W £ p £ 70000 the relationship was a power function. To effectively meet with the bleaching response for the different kinds and different consistencies of pulp in the tower, by using the fitting regression equations combined with the expressions of average bulk density and pressure in the tower caused by gravity-driven pulp, two equations for average packed density ρa were deduced with the aim of deciding the maximum volume value of the tower, in agreement with the sizes of the towers presently used by major companies.
- Researchpp 615-630Niu, M., Zhao, G.-J., and Alma, M. H. (2011). "Thermogravimetric studies on condensed wood residues in polyhydric alcohols liquefaction," BioRes. 6(1), 615-630.AbstractArticlePDF
To further clarify reasons for formation of condensed residues during the last stage of wood liquefaction in the medium of polyhydric alcohols and sulfuric acid catalyst, the weight loss behaviors and thermal reaction kinetics of condensed residues were studied by thermogravimetric analysis (TGA). Simultaneously, chemical methods were used to analyze the contents of lignin, cellulose, and holocellulose in the condensed residues. For all the unliquefied wood residues, the contents of cellulose decreased, and the residual ratios after TGA pyrolysis and the contents of lignin increased as a function of liquefaction time. Moreover, the highest weight loss rate went gradually to the higher temperature region after the liquefaction time and heating rate were extended. The values for apparent activation energy were lower at 150 minutes and 180 minutes and higher at 25 minutes. Liquefaction time had a smaller effect on the pyrolysis mechanism, as revealed by TGA. In conclusion, the thermal stabilities of condensed residues were higher than those of decomposed residues and wood. The condensation reaction occurred mainly during wood liquefaction, and condensed residues resulted possibly from mutual reaction among small molecules from decomposed lignin.
- Researchpp 631-640Sun, Y., Lin, C.-X., Liu, M.-H., and Liu, Y.-F. (2011). "Equilibrium adsorption behaviors and kinetic characteristics of oxymatrine on a spherical cellulose adsorbert," BioRes. 6(1), 631-640.AbstractArticlePDF
An investigation was conducted on the adsorption of oxymatrine (OMT) on a spherical cellulose adsorbent embedded with wattle bark tannin. The results showed that the adsorption of the OMT on the adsorbent was solution pH dependent and the adsorption process followed the Freundlich adsorption isotherm. The adsorption kinetics of the OMT on the adsorbent could be well described by the pseudo-second-order rate model. And, the adsorption capacity calculated by the pseudo-second-order rate model was close to the experimental data. Desorption and regeneration experiments showed that the OMT adsorbed on the adsorbent could be easily recovered by 50% methanol solution.
- Researchpp 641-655Rusu, M., Mörseburg, K., Gregersen, Ø., Yamakawa, A., and Liukkonen, S. (2011). "Relation between fibre flexibility and cross-sectional properties," BioRes. 641-655.AbstractArticlePDF
The correlation between the fibre flexibility and cross-sectional area moment of inertia of thermomechanical pulp fibres was investigated. The main effects of refining were found to be internal fibrillation, external fibrillation, and fibre shortening. Internal fibrillation increases fibre flexibility and fibre collapsibility, improving fibre-to-fibre contact in a paper sheet. The raw materials used were pulps produced from six different Norway spruce logs and six different Scots pine logs, chosen in a manner that allowed variation of fibre wall thickness and fibril angle independently. Each wood sample was refined in four stages using a pressurized 12″ Sprout Waldron single disc refiner. Fibre flexibility was assessed by FiberMaster bendability measurements. Fibre bendability was measured on the +48 Bauer McNett fractions of the twelve 2nd, 3rd, and 4th stage thermomechanical pulps (TMP). The fibre cross-sectional samples were imaged using scanning electron microscopy (SEM). An image analysis method to calculate the area moment of inertia of each fibre using numerical integration was developed. Fiber bendability increased with specific energy consumption for both wood species (spruce and pine) from the 2nd refining stage to the fourth refining stage. Spruce had a higher rate of bendability increase than pine upon refining. It was expected that fibres with a low area moment of inertia would result in higher bendability, but no such correlation was found for either spruce or pine. Fibre bendability increased with internal fibrillation, as assessed from Simons staining. These results imply that local damage of the fibre wall such as delaminations, kinks, and compressions was the main effect in increasing the flexibility through refining of TMP.
- Researchpp 656-671Sang, Y., McQuaid, M., and Englezos, P. (2011). "Optimization of chemical use for highly filled mechanical grade papers with precipitated calcium carbonate," BioRes. 656-671.AbstractArticlePDF
Response surface methodology was used with four factors to screen for the best starch and optimize the use of chemicals in order to maximize precipitated calcium carbonate (PCC) filler retention in a peroxide-bleached TMP suspension. Three commercial starches were used in conjunction with colloidal silica and flocculant. The PCC loading level and the interactions between PCC level, starch, flocculant, and silica were investigated, and empirical models were constructed. The empirical process models were then employed to predict the retention and drainage. It was found that medium-charged cationic starch (S858) gave the highest total and filler retention, whereas high-charged cationic starch (S880) resulted in the best drainage. The ash content of the handsheet can be pushed up to 40% using the retention system with medium (S858) and high (S880) charged cationic starch. The high-charged cationic starch (S880) gave stronger paper, probably because of its higher affinity with the fiber and fines.
- Researchpp 672-685Laitinen, O., Kemppainen, K., Stoor, T., and Niinimäki, J. (2011). "Fractionation of pulp and paper particles selectively by size," BioRes. 6(1), 672-685.AbstractArticlePDF
A study was made of the classification of pulp, paper, and peat particles by size with a device called a tube flow fractionator. An accurate and simple experimental model was formulated in order to estimate the time required for fractionation, yielding an excellent correlation between the observed and predicted fractionation times. The results showed that the fractionation time of a certain size of pulp, paper, and peat particles in the tube flow device can be accurately estimated from the length, width, and thickness of the particle. The results can be used to facilitate the selection of specific fractions of pulp and paper samples.
- Researchpp 686-699Gong, Y., Lin , L., and Yan, Z. (2011). "Catalytic hydrogenation and oxidation of biomass-derived levulinic acid," BioRes. 6(1), 686-699.AbstractArticlePDF
Levulinic acid (LA), 4-oxo-pentanoic acid, is a new platform chemical with various potential uses. In this paper, catalytic hydrogenation and oxidation of levulinic acid were studied. It was shown from experiments that levulinic acid can be hydrogenated to γ-valerolactone (GVL) over transition metal catalysts and oxidative-decarboxylated to 2-butanone (methyl-ethyl-ketone, MEK) and methyl-vinyl-ketone (MVK) by cupric oxide (CuO), cupric oxide/cerium oxide (CuO/CeO2), cupric oxide/ alumina (CuO/ Al2O3), and silver(I)/ peroxydisulfate (Ag(I)/S2O82-).