NC State
BioResources
  • Researchpp 3672-3684van Dyk, H., Peralta, P., and Peszlen, I. (2013). "Modeling of the mechanical properties of a wood-fiber/bicomponent-fiber composite," BioRes. 8(3), 3672-3684.AbstractArticlePDF

    An engineered composite that combines a wood fiber core, a bicomponent fiber face, and a bicomponent fiber back was evaluated for its elastic response using laminate theory. Using the properties of the individual laminae as input variables, the laminate’s elastic modulus, axial strain, and lateral strain were determined by means of the model, and compared with values determined experimentally. The model yielded an axial elastic modulus of 950 MPa, which did not differ substantially from the measured value of 920 MPa. Statistical analyses showed that the measured and calculated strains were not significantly different in either the axial or lateral directions. The model underpredicted the strains along the fiber direction of the bicomponent fiber sheets by approximately 4%. A greater difference (12%) between predicted and measured values was observed in the lateral direction.

  • Researchpp 3685-3698Ren, X.-Y., Zhang, Z.-T., Wang, W.-L., Si, H., Wang, X., and Chang, J.-M. (2013). "Transformation and products distribution of moso bamboo and derived components during pyrolysis," BioRes. 8(3), 3685-3698.AbstractArticlePDF

    Transformation and products distribution of moso bamboo (Phyllostachys edulis) and its derived components during pyrolysis were investigated by thermogravimetric analyzer coupled with Fourier transform infrared spectrometry (TG-FTIR) and analytical pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS) techniques. The pyrolysis of moso bamboo was generally an integrated result of the decomposition of its several derived components by examining the degradation process parameters and pyrolysis kinetics. The main peaks of the infrared (IR) spectrum for gases released at the highest intensity were assigned to be CO2, CO, CH4, H2O, acids, aldehydes, aromatics, ethers, and alcohols. Pyrolysis temperature played an important role in the products distribution of moso bamboo by affecting the products’ yield and secondary cracking of heavy compounds. 500 °C was an inflection point for product release during moso bamboo pyrolysis. Further cracking of aromatic compounds and furans into lighter products was observed with increasing pyrolysis temperature.

  • Researchpp 3699-3705Zhang, Q., Fu, S., Li, H., and Liu, Y. (2013). "A novel method for the determination of hydrogen peroxide in bleaching effluents by spectroscopy," BioRes. 8(3), 3699-3705.AbstractArticlePDF

    A spectrophotometric for the determination of hydrogen peroxide in pulp bleaching effluents is reported. The method is based on hydrogen peroxide instantly reacting with vanadium pentoxide in sulfuric acid solution, forming a peroxovanadate complex that has an absorption maximum at 454 nm. It was found that the optimum conditions were as follows: detection wavelength of 454 nm, a V2O5:H2O2 mole ratio of 2.2, and a sulfuric acid concentration of 0.5 mol/L. In order to eliminate the interference from dissolved lignin, fines, and suspended solids, the samples were acidified and centrifuged for spectroscopic quantification. The results showed that the method has an excellent measurement precision (RSD < 0.3%) and accuracy for the quantification of hydrogen peroxide content in pulp bleaching effluents. The present method is simple and accurate, making it suitable for applications in the pulp and paper industry.

  • Researchpp 3706-3717Azetsu, A., Koga, H., Yuan, L.-Y., and Kitaoka, T. (2013). "Direct synthesis of gold nanocatalysts on TEMPO-oxidized pulp paper containing aldehyde groups," BioRes. 8(3), 3706-3717.AbstractArticlePDF

    In situ synthesis of gold nanoparticles on paper sheets was achieved without any external reducing reagents and heat treatments. Surface-activated pulp fibers with carboxyl and aldehyde contents of 1.18 and 0.349 mmol g–1, respectively, which were obtained from softwood kraft pulp using 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), were fabricated into paper sheets with polyamideamine epichlorohydrin (PAE) resin with a papermaking technique. The TEMPO-oxidized pulp papers were flexible, lightweight, and easy to handle in a wet state due to the PAE-mediated reinforcement. Simple immersion of the white TEMPO-oxidized paper in an aqueous solution of tetrachloroauric acid at room temperature brought about distinct color change from white to red-purple, strongly suggesting the formation of gold nanoparticles. Post-oxidized aldehyde-free paper provided no color variation, and thus the aldehyde groups on pulp fibers made a significant contribution to the in situ synthesis of gold nanoparticles. The organic–inorganic paper materials of TEMPO-oxidized pulp and gold nanoparticles demonstrated the catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in an aqueous system.

  • Researchpp 3718-3731Kain, G., Barbu, M. C., Hinterreiter, S., Richter, K., and Petutschnigg, A. (2013). "Using bark as a heat insulation material," BioRes. 8(3), 3718-3731.AbstractArticlePDF

    Spruce bark particles were used as an insulation fill material for the thermal insulation of a timber frame wall which was subjected to a simulated winter temperature difference between indoor and outdoor climate. The temperature profile development of the wall’s cross section was modeled using Fourier’s transient heat flow theory. It was shown that bark layers conducted heat more slowly than commonly known blow-in insulation materials because of their low thermal diffusivity. Moreover, material moisture development due to water vapor streams caused by vapor pressure differences between the inside and outside climate was studied, and it supported general timber construction rules.

  • Researchpp 3732-3740Wang, M., Li, W., Liu, S., Liu, D., Yin, L., and Yuan, H. (2013). "Biogas production from Chinese herb-extraction residues: Influence of biomass composition on methane yield," BioRes. 8(3), 3732-3740.AbstractArticlePDF

    The Chinese traditional medicine industry is developing quickly in China, and there is a growing demand for the reasonable treatment of Chinese herb-extraction residues (CHER) that are generated during the process of preparing such medicines. Different from other biomass materials, the nutrient composition of CHER discharged from different producers may vary widely, which makes the study of CHER recycling quite difficult. The present study concerns the effect of nutrient composition on the specific methane yield from the anaerobic digestion of CHER in batch trials under mesophilic temperatures. Large differences were found in the nutrient compositions of the six kinds of CHER, and the total fat and neutral detergent fiber contents affected the specific methane yield more significantly than did the total protein and total sugar contents. The specific methane yields of the six kinds of CHER were 199, 208, 211, 144, 151, and 201 mL CH4 per gram of volatile solids. From the digestion experiments, a multiple linear regression equation, the Methane Energy Value Model (MEVM), was derived; this model estimates the methane yield from the nutrient composition of CHER. The model requires further validation and refinement.

  • Researchpp 3741-3752Gaff, M., and Gašparík, M. (2013). "The development of stresses during the shaping of the surface of aspen wood and their impact on the quality of the surface," BioRes. 8(3), 3741-3752.AbstractArticlePDF

    This work investigates the influence of wedge shape and depth of pressing on creation of stresses, as well as the influence of these stresses on quality of wood surface during wood embossing. For the identification of stresses, SolidWorks software was used, through which a simulation was made for the progression of monitored stresses which occur when pressing the wedges with various shapes to different depths of pressing. Based on these findings, it was possible to monitor factors that were modified so that embossing would achieve the desired shape and dimensionally stable surface without undesirable quality defects.

  • Researchpp 3753-3770Islam, M. R., Beg, M. D. H., and Gupta, A. (2013). "Characterization of laccase-treated kenaf fibre reinforced recycled polypropylene composites," BioRes. 8(3), 3753-3770.AbstractArticlePDF

    Raw and laccase-treated kenaf fibre (KF) were used individually to reinforce recycled polypropylene (RPP) using extrusion and injection moulding. Laccase was used to modify the surface of the fibre to improve the compatibility between fibre and matrix. Enzyme concentration and soaking time were considered as the treatment parameters. Maleic anhydride grafted polypropylene (MAPP) was used with a ratio of 1:10 as coupling agent to fibre. Fibres were characterized by density, energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM), whereas composites were characterized by density, melt flow index (MFI), mechanical tests (tensile, flexural, and impact), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), field emission electron microscopy (FE-SEM), and water uptake analysis. Density, O/C ratio, and crystallinity of the treated fibre were increased. An optimum fibre loading of 40% gave the highest tensile properties. Tensile strength improved due to coupling agent by 37%, whereas treatment of fibre did the same by 40%. Flexural, impact, and thermal properties of the composites and crystallinity of the matrix were improved due to treatment. Morphological images of the composites showed better adhesion, and moisture absorption was reduced by 37% due to treatment and use of coupling agent.

  • Researchpp 3771-3790Dax, D., Eklund, P., Hemming, J., Sarfraz, J., Backman, P., Xu, C., and Willför, S. (2013). "Amphiphilic spruce galactoglucomannan derivatives based on naturally-occurring fatty acids," BioRes. 8(3), 3771-3790.AbstractArticlePDF

    A class of nonionic polysaccharides-based surfactants were synthesised from O-acetyl galactoglucomannan (GGM), water-soluble hemicelluloses from spruce, using naturally-occurring saturated fatty acids, CH3(CH2)nCOOH (n = 7, 12, and 16). Hemicelluloses can be recovered from waste-streams of papermaking and agricultural processes or isolated by hot water extraction of plant tissues integrated into a biorefinery process. Fatty acids can be recovered as byproducts of the agricultural and food industries. Different synthesis routes were applied to yield amphiphilic derivatives with either a grafted or block structure. Fatty acids activated with 1,1′-carbonyldiimidazole (CDI) were grafted to the backbone of GGM molecules on their hydroxyl groups. Alternatively, synthesised amino-activated fatty acids using ethylenediamine were reacted with the reducing end of GGM. By adjusting the reagent ratios, GGM-based surfactants with different hydrophilic to hydrophobic ratios were prepared. Their surface activity was assessed by measuring the surface tension in water. This study presents an approach to design carbohydrate-based surfactants using naturally-occurring fatty acids that may find potential applications in such areas as food, cosmetic, and paint formulations.

  • Researchpp 3791-3801Hemmasi, A. H., Ghasemi, I., Bazyar, B., and Samariha, A. (2013). "Studying the effect of size of bagasse and nanoclay particles on mechanical properties and morphology of bagasse flour/recycled polyethylene composites," BioRes. 8(3), 3791-3801.AbstractArticlePDF

    The effect of the size of bagasse and nanoclay on mechanical properties and morphology of bagasse flour/recycled polyethylene nanocomposite was studied. The content of bagasse flour was considered to be constant at 40%, with the size of the remaining flour on sieves of mesh 40, 70, and 100, and the accompanying nanoclay content being 0, 2, and 4 wt%, respectively. It was found that tensile strength, flexural strength, and tensile and flexural modulus were increased by decreasing the size of the particles to mesh 70. Notched impact strength was also increased by reduction of the flour dimensions. Increasing the nanoclay content up to 2 wt% led to enhanced tensile and flexural strengths as well as tensile and flexural moduli of the composite material. These properties were hurt by the addition of 4 wt% nanoclay. On the other hand, increasing the nanoclay content up to 4 wt% is expected to decrease notched impact strength of the composites. X-ray diffraction (XRD) data indicated that the order of intercalation was higher at 2 wt% nanoclay in comparison with the samples containing 4 wt% nanoclay, and the d-spacing of layers decreased with increasing of nanoclay particles content.

@BioResJournal

55 years ago

Read More