Research Articles
Latest articles
- Researchpp 6613-6624Euring, M., Kirsch, A., and Kharazipour, A. (2016). "Pre-pressing and pre-heating via hot-air/hot-steam process for the production of binderless medium-density fiberboards," BioRes. 11(3), 6613-6624.AbstractArticlePDF
The hot-air/hot-steam process was used for the first time as a combined pre-pressing and pre-heating system for the production of medium-density fiberboards (MDF) at the pilot scale. Pre-heating systems are designed to pre-heat fiber mats before pressing by hot-presses. Using such techniques, pressing times are reduced significantly and the board properties are influenced positively; both are essential for effective MDF production. In recent years, industry has searched for alternatives to petrochemical binders. Primarily, MDF are bonded by urea-formaldehyde (UF) resins in Europe. To replace UF resins, a laccase-mediator-system (LMS) was used to activate the wood fibers’ self-cohesion. It was found that the internal bond strength (IB) and thickness swelling (TS) were noticeably improved by applying the hot-air/hot-steam process before final hot-pressing for both LMS and 10% UF binding systems. Simultaneously, the total pressing time could be reduced by 25% when combining the hot-air/hot-steam process with hot-pressing.
- Researchpp 6625-6638Liu, J., and Wang, X. (2016). "Effect of drying temperature and relative humidity on contraction stress in wood," BioRes. 11(3), 6625-6638.AbstractArticlePDF
As wood shrinks during the drying process, various stresses may develop and cause surface and internal checking. The aim of this study was to systematically investigate the effect of the drying temperature, relative humidity, and specimen thickness on the contraction stress in elm wood (Ulmus pumila L.) specimens during drying. The contraction stress was used as an indirect indicator of drying stresses. A measurement system was developed in-house and used to simultaneously and continuously obtain the required measurements during drying, which were then used to determine the moisture content, amount of shrinkage, and contraction stress of the wood specimens. In the process of drying, the contraction stress was initially negative with a decrease in the moisture content and an increase in the shrinkage. Then the contraction stress increased gradually and eventually stabilized upon reaching the maximum. The results also showed that as the temperature increased, the moisture content decreased, the shrinkage decreased, the maximum contraction stress decreased, and the contraction stress reached a maximum in a shorter amount of time.
- Researchpp 6639-6648Dato’ Hasnan, M. A., Husseinsyah, S., Ying, L. B., and Abd Rahman, M. F. (2016). "Chemical modification of palm kernel shell filled polylactic acid biocomposite films," BioRes. 11(3), 6639-6648.AbstractArticlePDF
Palm kernel shell (PKS) was incorporated with polylactic acid (PLA) using a solution casting method to produce PLA/PKS biocomposite films. The effects of filler content and butyl methacrylate on the mechanical properties, morphological properties, and thermal properties of PLA/PKS biocomposite films were studied. The addition of PKS into the PLA matrix decreased the tensile strength and elongation at break of PLA/PKS biocomposite films with increasing filler content. In contrast, the modulus of elasticity of the biocomposite films increased. The use of butyl methacrylate as a chemical modification for PKS enhanced the interfacial adhesion and wettability of PKS inside the PLA matrix. This effect was confirmed by the increase in tensile strength, modulus of elasticity, and thermal stability of the biocomposite films. Moreover, scanning electron microscopy showed that there was better interfacial interaction between the filler and the PLA matrix.
- Researchpp 6649-6662Tipu Sultan, M., Rahman, M. R., Hamdan, S., Chang Hui Lai, J., and Talib, Z. A. (2016). "Clay dispersed styrene-co-glycidyl methacrylate impregnated kumpang wood polymer nanocomposites: Impact on mechanical and morphological properties," BioRes. 11(3), 6649-6662.AbstractArticlePDF
Physical, mechanical, and morphological properties of a clay dispersed styrene-co-glycidal methacrylate (ST-co-GMA) impregnated wood polymer nanocomposite (WPNC) were evaluated. The WPNC was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), 3-point bending, free-vibration testing, and X-ray diffraction (XRD) measurements. The FT-IR results showed that the absorbance at 1730 cm−1 was increased for ST-co-GMA-clay-WPNC compared with other nanocomposites and the raw material. The XRD results revealed that crystallinity index and d-spacing were increased compared to raw wood. The SEM results showed that ST-co-GMA-clay-WPNC had a smoother surface than other nanocomposites and raw wood. The modulus of elasticity (MOE), modulus of rupture (MOR), and dynamic Young’s moduli (Ed) of WPNCs were considerably increased compared to wood polymer composites (WPCs) and raw wood. The raw wood exhibited a higher water uptake (WU) than WPNCs and WPCs.
- Researchpp 6663-6676Kılıç, M. (2016). "Effect on shear strength of machining methods in Pinus nigra Arnold bonded with polyurethane and polyvinyl acetate adhesives," BioRes.11(3), 6663-6676.AbstractArticlePDF
Specimens taken from Pinus nigra Arnold were subject to surfacing techniques by being cut with a circular saw, planed with a thickness machine, and sanded with a calibrating sanding machine (with P80 grit sandpaper). First, their surface roughness values were measured; then, the specimens were processed in the machines in a radial and tangential process. Afterwards, the change in shear strength (adhesiveness resistance) was analyzed as a result of bonding with various adhesive types (PVAc, PU) and pressure applications (0.45 N/mm² or 0.9 N/mm²). Approximately 600 specimens were prepared with the purpose of identifying the effect of variables on the bonding performance, and they were subjected to shear testing. The greatest shear strength achieved for both the tangential and radial surfaces in terms of cutting was observed in specimens processed in the thickness machine, on which polyvinyl acetate adhesive and 0.9 N/mm². pressure were applied. Specimens bonded with polyvinyl acetate adhesive displayed higher shear strength in general in comparison to those bonded with polyurethane for both tangential and radial surfaces.
- Researchpp 6677-6691Han, J., Lv, J., Zhan, X., Huang, R., and Xu, X. (2016). "Interfacial adhesion and damping characteristics of laminated veneer lumber intercalated with rubber sheets," BioRes. 11(3), 6677-6691.AbstractArticlePDF
Laminated wood veneer lumber intercalated with rubber sheets (LLVR) was fabricated using a layered adhesive system composed of polyaryl polymethylene isocyanate (PAPI) for wood-rubber inter-bonding and phenol formaldehyde (PF) resin to glue the wood veneers. The optimized manufacturing process (chloroprene rubber: CR; PAPI: 80 g/m2; PF: 200 g/m2; and silane: 9.0 wt.%) was determined. The process as developed was then utilized to fabricate nine-ply LLVRs of five balanced constructions with two or three CR laminates used as various layers. The physico-mechanical properties of the LLVRs were evaluated, and the results showed that LLVRs had strong shear strength, sound dimensional stability, decent bending strength, and favorable toughening and buffering performances. The newly developed product is an interesting potential alternative to traditional laminated veneer lumber or plywood.
- Researchpp 6692-6707Yao, L., Chen, C., Zheng, X., Peng, Z., Yang, H., and Xie, Y. (2016). "Determination of lignin-carbohydrate complexes structure of wheat straw using carbon-13 isotope as a tracer," BioRes. 11(3), 6692-6707.AbstractArticlePDF
To maximize the use of wheat straw as a feedstock for biofuels and other biorefinery products, the structure of lignin-carbohydrate complexes (LCCs) was characterized by injection of 13C isotope-labeled xylose into living wheat straw. Afterwards, lignin-carbohydrate complexes were extracted from the harvested straw by the Björkman method. The extracted LCCs were chemically characterized by Fourier transform-infrared spectroscopy (FT-IR), sugar composition, molecular weight analysis, 13C-NMR, and HSQC. The results showed that LCCs in wheat straw were particularly enriched with xylan and exhibited narrow polydispersity (Mw/Mn < 1.5). NMR analysis showed that the lignin was linked with the carbohydrates through γ-ester, phenyl glycoside, and benzyl ether bonds. In addition to S, G, and H lignin units, p-coumarate and ferulate were also in the LCCs. The substructures in lignin were β-O-4′, β-β’, and β-5′. Quantitative data analysis of 13C-NMR combined with HSQC showed that the lignin in the LCCs of wheat straw contained guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) units in the proportion of 5:4:1 (S:G:H). The main lignin substructure, β-O-4′, comprised 71.64% of the isolated lignin. The total LCC linkages (the sum of phenyl glycoside, γ-ester and benzyl ether bonds) were 210.86 /100C9 in 13C-LCC, which was dominated by phenyl glycoside linkages, followed by γ-ester bonds and minor amounts of benzyl ether bonds. Lignin and xylan in the LCCs of wheat straw were mainly linked by benzyl ether bonds and phenyl glycoside linkages.
- Researchpp 6708-6726Oke, M. A., Ishola, M. M., Taherzadeh, M. J., Mohamad Annuar, M. S., and Simarani, K. (2016). "Effects of pretreatment of single and mixed lignocellulosic substrates on production of endoglucanase by Bacillus aerius S5.2," BioRes. 11(3), 6708-6726.AbstractArticlePDF
A mixed substrate (MS) comprising oil palm empty fruit bunch (EFB), oil palm frond (OPF), and rice husk (RH) was evaluated for endoglucanase production by Bacillus aerius S5.2. Effects of sulphuric acid, sodium hydroxide, N-methylmorpholine-N-oxide (NMMO), and hydrothermal pretreatments on endoglucanase production were investigated. Endoglucanase production by B. aerius on the untreated (0.677 U/mL) and pretreated MS (0.305 – 0.630 U/mL) was generally similar, except that the acid (0.305 U/mL) and hydrothermal (0.549 U/mL) pretreatments that were more severe consequently produced significantly lower titres. Alkali pretreatment supported the highest enzyme production (0.630 U/mL) among all pretreatments that were studied. When endoglucanase production on the alkali-pretreated MS and single substrates (SS) was compared, alkali-pretreated EFB produced a titre (0.655 U/mL) similar to the MS, and this was significantly higher than titres recorded on OPF (0.504 U/mL) and RH (0.525 U/mL). Lower enzyme production was found to be consistent with higher pretreatment severity and greater removal of amorphous regions in all the pretreatments. Furthermore, combining the SS showed no adverse effects on endoglucanase production.
- Researchpp 6727-6741Ghorbani, M., Liebner, F., van Herwijnen, H. W. G., Pfungen, L., Krahofer, M., Budjav, E., and Konnerth, J. (2016). "Lignin phenol formaldehyde resoles: The impact of lignin type on adhesive properties," BioRes. 11(3), 6727-6741.AbstractArticlePDF
Lignin-phenol-formaldehyde (LPF) resoles were prepared using different types of lignin at various levels of phenol replacement by lignin (0 to 40 wt.%). Adhesive properties including thermal behavior as determined by differential scanning calorimetry (DSC), time-dependent development of bond strength during hot pressing as determined by automated bonding evaluation system (ABES), tensile shear strength of solid beech wood lap-joints, and free formaldehyde content of the adhesives were investigated. Preparation of phenol-formaldehyde (PF) resole was accomplished using molar ratios of formaldehyde/phenol and NaOH/phenol of 2.5 and 0.3, respectively. Four different types of technical lignins were studied: Sarkanda grass soda lignin, wheat straw soda lignin, pine kraft lignin, and beech organosolv lignin. The synthesis of the resoles was optimized for 20 and 40 wt.% phenol replacement by lignin. Increasing substitution of phenol resulted in faster gain of LPF viscosity for all studied lignins. The best curing performances of the LPF resoles were observed for pine kraft lignin at both 20 and 40% phenol replacement. The amount of formaldehyde not consumed during cooking increased with increasing level of phenol replacement. However, no differences in free formaldehyde content were observed between the different lignin samples at comparable levels of phenol replacement.
- Researchpp 6742-6755Saurabh, C. K., Dungani, R., Owolabi, A. F., Atiqah, N. S., Zaidon, A., Sri Aprilia, N. A., Md. Sarker, Z., and Abdul Khalil , H. P. S. "Effect of hydrolysis treatment on cellulose nanowhiskers from oil palm (Elaeis guineensis) fronds: Morphology, chemical crystallinity, and thermal characteristics," BioRes. 11(3), 6742-6755.AbstractArticlePDF
Oil palm fronds biomass was used as a source for isolation of cellulose nanowhiskers (CNW), and its subsequent characterization was done. Non-cellulosic components such as lignin, hemicellulose, and pectin were removed from the biomass by chemimechanical alkaline hydrogen peroxide method followed by sulphuric acid hydrolysis having different time duration of hydrolysis. Apart from the progressive reduction in peaks characteristic of hemicellulose and lignin dissolution, FTIR spectroscopy analysis showed that there were no significant variations in peak positions, signifying that the hydrolysis did not affect the chemical structure of CNW. FESEM showed that there was gradual reduction in the aggregated structure of fiber due to bleaching. Nanoscale structure of CNW was revealed by TEM. XRD analysis revealed that the natural structure of cellulose I polymorph was maintained irrespective of the hydrolysis time. High thermal stability and aspect ratio of the extracted CNW demonstrated its suitability as a reinforcement material in nanocomposites.