Research Articles
Latest articles
- Researchpp 684-697Prinz, M., Zollner-Croll, H., Bauer, W., and Meltzer, F. P. (2021). "A new method to evaluate the hand-feel potential of furnishes for tissue paper products," BioResources 16(1), 684-697.AbstractArticlePDF
The human perception of softness is an important yet complex property of hygiene tissue paper products. Softness is a function of the combination of machine technology, chemical additives, and furnish composition. As a result, it is difficult to investigate the influence of single parameters. Because no completely satisfactory method for determining the softness of furnishes is available at the laboratory scale, the influence of different fibrous materials in combination with their treatment cannot be comprehensively investigated. To work toward this possibility, this publication describes the development of a method to obtain reliable results based on laboratory handsheets using a modified tissue softness analyzer (TSA). With the help of basic statistical methods, a procedure was developed that reproducibly distinguished the influence between softwood and hardwood. To demonstrate the potential of this method, it was tested on an industrial tissue machine and the influence of four different furnishes on the softness of the semi-finished product was determined.
- Researchpp 698-720Leggate, W., Kumar, C., McGavin, R. L., Faircloth, A., and Knackstedt, M. (2021). "The effects of drying method on the wood permeability, wettability, treatability, and gluability of southern pine from Australia," BioResources 16(1), 698-720.AbstractArticlePDF
Drying has a major impact on the viability of sawn timber production, particularly through its influence on productivity, energy usage, and product quality. Traditionally, plantation-grown southern pine structural grade timber from Australia has been dried using high temperature (≥ 180 °C) conventional batch kilns. However, the Australian industry is showing increasing interest in continuous drying kilns because of reported cost savings and potential improvements in product quality. This study investigated the differences between continuous drying and conventional drying schedules on the radial permeability, wettability, gluability, and treatability of southern pine timber from Queensland plantations. The high temperature drying resulted in significantly lower liquid permeability compared to low temperature drying; however, there were no significant differences between drying schedules for gas permeability. For combined wood surface and core data, there were no significant differences in liquid permeability between low temperature drying and continuous drying or between continuous drying and high temperature drying schedules. For earlywood after surface machining, continuous drying resulted in the greatest wettability (based on K-values), whereas for latewood after surface machining, low temperature drying produced the greatest wettability. Earlywood had greater wettability compared to latewood. Continuous drying resulted in better gluability and treatability compared to conventional drying schedules.
- Researchpp 721-728Ergun, H. (2021). "Segmentation of rays in wood microscopy images using the U-net model," BioResources 16(1), 721-728.AbstractArticlePDF
Rays are an important anatomical feature in tree species identification. They are found in certain proportions in trees, which vary for each tree. In this study, the U-Net model is adopted for the first time to detect wood rays. A dataset is created with images taken from the wood database. The resolution of microscopic wood images in tangential section is 640×400. The input image for training is divided into 32×32 image blocks. Each pixel in the dataset is labeled as belonging to the ray or the background. Then, the dataset is increased by applying scale, rotation, salt-and-pepper noise, circular mean filter, and gauss filter. The U-Net network created for ray segmentation is trained using the Adam optimization algorithm. The experimental results show that the ray segmentation accuracy in testing is 96.3%.
- Researchpp 729-746Zhang, J., He, Z., Guo, Q., Xiao, D., and Zhan, W. (2021). "Effects of microwave modification on the desulfurization and denitrification of activated coke," BioResources 16(1), 729-746.AbstractArticlePDF
Microwave modification of activated coke is reported as a green and simple route to improve its synergistic desulfurization and denitrification. The results showed that microwave irradiation improved the specific surface area and pore volume, decreased the pore size, and activated the surface functional groups of the activated coke. Under the conditions of a microwave power of 500 W and a modification time of 30 min, the specific surface area was increased from 185.9 m2/g to 351.7 m2/g, the pore volume increased from 0.042 m3/g to 0.111 m3/g, and the characteristic peak strengths of C=C and -OH drastically increased. When the reaction temperature was 140 °C and the O2 concentration was 10% (by volume), the desulfurization and denitrification efficiency were maintained at levels greater than 90% and 80% for 30 min and 15 min, respectively. The C-O content increased, and the C=C and -OH content decreased after undergoing desulfurization and denitrification. The desulfurization and denitrification products were primarily sulfate and nitrate. This provides theoretical support for the application of microwave modified active coke in low temperature desulfurization and denitrification.
- Researchpp 747-763Liu, X., Chen, S., and Fu, Y. (2021). "Properties of Pinus modified with silicon–titanium binary oxides," BioResources 16(1), 747-763.AbstractArticlePDF
Modification of Pinus yunnanensis using SiO2–TiO2 was carried out via the sol–gel method. The aim was to improve the hydrophobicity, aging resistance, and photocatalysis of the wood surface via the formation of new chemical bonds with penetrated SiO2 and TiO2. The air-dried P. yunnanensis wood underwent penetration, gelation, aging, and drying. The wood was exposed to high temperatures for modification, and its microstructure, composition, photodegradability, resistance to aging, dimensional stability, and hydrophobicity were then determined. The results indicated that during modification, SiO2–TiO2 gel was generated in the wood, and the content of the gel increased as penetration time was extended. No structural change in the wood was observed. Meanwhile, chemical bonds were formed among SiO2, TiO2, and wood. The contact angle of the modified wood increased noticeably relative to that of unmodified wood. This increase indicated a noticeable increase in the hydrophobicity of the wood surface. The modified wood exhibited high photocatalytic degradation; however, its durability was not evident. The water absorption and thickness swelling of the modified wood markedly increased. After ultraviolet-aging resistance testing, the color change in the surface of the modified wood was noticeably less than that of the unmodified wood.
- Researchpp 764-778Majlingova, A., Lieskovský, M., Oravec, M., Trenčiansky, M., and Veľas, R. (2021). "Thermochemical properties of energy crop species planted in Slovakia," BioResources 16(1), 764-778.AbstractArticlePDF
In the last decades, a new phenomenon has arisen in connection with temporary or permanent non-use of land for agricultural activity, namely the cultivation of energy crops in these localities, because of growing demand for biomass as a fuel. Farmers are expected to sell energy crops and the fuels they produce, both at home and in the surrounding countries. To choose economically efficient energy crop species to cultivate, the thermochemical parameters of the crop should be used to support decision-making process of farmers. This paper summarizes the results of small-scale laboratory tests of three energy crop species planted in Slovakia – Sida hermaphrodita, Arundo donax, and Miscanthus × giganteus – used for determination of thermal and chemical properties of the energy crop species to evaluate their suitability for energy purposes. The most suitable species for energy purposes was found to be Miscanthus × giganteus with higher heating value of 19.6 MJ/kg, lower heating value of 14.8 MJ/kg (at moisture content of 17%), and ash mass of 2.67% dry mass (d.m.). From a lignin mass and activation energy point of view, the most suitable for energy purposes was Arundo donax, with a lignin mass of 20.5% d.m. and an activation energy of 124.2 KJ/mol.
- Researchpp 779-788Ahadnezhad, M., Izadyar, S., and Efhamisisi, D. (2021). "Investigation of fungal decay of poplar wood treated with pistachio resin," BioResources 16(1), 779-788.AbstractArticlePDF
The density, swelling, and fungal decay of poplar (Populus deltoides) wood treated with pistachio resin (PR) obtained from Pistacia atlantica were investigated. The white-rot fungus Trametes versicolor and the brown-rot fungus Coniophora puteana were used. Methanolic solutions of PR with different concentrations of 1%, 6%, 12%, and 15% were used as the preservative solution. Wood samples were saturated by two different vacuum/pressure (V/P) and dipping methods. The density, volumetric swelling of treated wood, and their mass loss (ML) caused by fungal decay were determined. The density of treated species increased to 15.4% and 5.8% for V/P and dipping methods, respectively, at 15% PR concentration. The volumetric swelling of the treated samples was reduced to 24.5% and 16.8% for V/P and dipping procedure, respectively, at 15% PR concentration. The mass loss of treated samples after exposure to T. versicolor was less than the untreated one (17.4% for V/P and 22.6% for dipping methods at 15% PR concentration). The results showed the better performance of V/P treatment in promotion of wood durability against fungal decay than the dipping method.
- Researchpp 789-804Jin, Q., Zhu, L., Madiniyeti, J., He, C., and Li, L. (2021). "Influence of active inorganic fillers on the physical and mechanical properties of polyvinyl chloride wood-plastic composites when immersed," BioResources 16(1), 789-804.AbstractArticlePDF
Hydration-active steel slag and slag micropowder were used as inorganic fillers with silane coupling agent (KH550) to prepare wheat straw/polyvinyl chloride wood-plastic composites (WPCs) by extrusion molding. A 35-day immersion and a pre-immersion test were carried out to analyze the influence of steel slag and slag micropowder on the physical and mechanical properties of the WPCs under wet conditions. Results showed the following: (1) KH-550 exhibited a good surface modification effect on the activated steel slag and slag micropowder, (2) an increase in the activated steel slag and slag micropowder content could effectively reduce the percent water absorption of the WPCs by 20% to 25% and the expansion by 20% to 24%, respectively, compared with the control group, but had a limited effect on the tensile strength retention, and (3) pre-immersion could effectively induce the synergistic reinforcement effect of the active fillers, resulting in reaching the saturated water absorption within 20 days. The water absorption and tensile strength were respectively 18% to 25% lower and 1.5% to 3% higher than those of the composites without pre-immersion. The results of this study could provide experimental data and theoretical references for the influence of hydration-active inorganic fillers on WPC properties.
- Researchpp 805-815Shi, K., Wei, Z., Zhang, W., and He, C. (2021). "The effect of hot water treatment on the properties of lotus leaves, reed leaves, and basho leaves combined with gelatin composites," BioResources 16(1), 805-815.AbstractArticlePDF
This study investigated the feasibility of preparing biodegradable composites, such as food packing materials, from plant leaves as a substitute plastic. Lotus leaves, reed leaves, and basho leaves were treated with hot water and combined with gelatin to form composite samples. The effects on the morphology, thermal properties of leaves, and the mechanical properties and moisture absorption of the composites were studied. The Fourier-transform infrared spectroscopy (FTIR) analysis showed that the amorphous components such as lignin, wax, and pectin were removed after the hot water treatment. The treatment had the most beneficial effect on the reed leaf. The reed/gelatin composites had the best mechanical properties, of which the tensile strength and the flexural strength were 14.0% and 77.1%, respectively, higher than that of the lotus/gelatin composites and 121.5% and 192.5%, respectively, higher than that of the basho/gelatin composites. The morphology of the cross-section of the composites showed that there were numerous holes and gaps in the basho/gelatin composites which induced a high moisture absorption performance.
- Researchpp 816-824Chávez-Rosales, J. S., Pintor-Ibarra, L. F., González-Ortega, N., Orihuela-Equihua, R., Ruiz-Aquino, F., Luján-Álvarez, C., and Rutiaga-Quinones, J. G. (2021). "Basic chemical composition of Pinus spp. sawdust from five regions of Mexico, for bioenergetic purposes," BioResources 16(1), 816-824.AbstractArticlePDF
The basic chemical composition and calorific value of 19 samples of pine sawdust from different forest industries located in five states of the Mexican Republic (Chihuahua, Michoacán, Durango, Oaxaca, and Nuevo León) were determined. The results obtained ranged as follows: total extractives (6.1% to 23.4%), holocellulose (60.1% to 70.4%), lignin (20.5% to 25.8%), ash (0.27% to 0.95%), pH (4.1 to 5.3), and calorific value (20.1 MJ/kg to 21.0 MJ/kg). Except for the ash content, significant statistical differences were found according to the origin of the pine sawdust samples. Based on the results obtained, the sawdust biomass has the potential to obtain densified solid biofuels.