NC State
BioResources
  • Researchpp 6162-6173You, Y., Sun, X., Cui, Q., Wang, B., and Ma, J. (2016). "The retention and drainage behavior of cross-linked gelatin with glutaraldehyde in a papermaking system," BioRes. 11(3), 6162-6173.AbstractArticlePDF
    A type of novel retention aid, cross-linked gelatin, was prepared using low-grade industrial gelatin as the raw material and glutaraldehyde as the crosslinking agent. The structure of cross-linked gelatin was characterized according to the crosslinking degree, isoelectric point, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy. The results indicated that the crosslinking reaction was successfully performed between the primary amine group of gelatin and the aldehyde group of glutaraldehyde, resulting in the formation of a Schiff base structure. The retention test showed that the addition of cross-linked gelatin remarkably improved the retention of filler. This effect was mainly attributed to the fact that cross-linked gelatin, with a high molecular weight and highly branched structure, exhibited favorable bridging flocculation and induced filler aggregation into the flocs, which were retained in the paper sheet. The drainage test showed that the cross-linked gelatin exhibited a poor drainage effect, which was attributed to the synergic effects of excellent hydrophilicity, film forming property, and sealing property.
  • Researchpp 6174-6184Múčka, M., Šedivka, P., Bomba, J., and Blažek, J. (2016). "Influence of spacer frames for wooden roof windows on the formation of surface condensation," BioRes. 11(3), 6174-6184.AbstractArticlePDF
    This study reports the thermal characteristics of windows installed in the roof cladding of a block of flats in the second temperature zone of the Czech Republic, with boundary conditions for the design value θse = – 15 °C, according to the national standard ČSN 73 0540-3 (2005). The thermal behaviour of these elements was evaluated with regard to the condensation on roof windows, with four different types of spacer frames and the given boundary conditions, for maintenance of the thermal and technical humidity comfort of the interior. The tests of the surface temperatures of the diagnosed glazed roof units at the glazing of the wooden windows demonstrated that the SGG composite spacer was the best from a thermal perspective. The spacer frames based on aluminum, stainless steel, and a combination of stainless steel and plastic (TGI) did not provide adequate thermal insulation characteristics for usage in roof windows under the given climatic conditions, and condensation occurred on the glass surfaces.
  • Researchpp 6185-6192Liang, L., Li, J., Zeng, J., Ma, N., An, Y., Ju, R., and Wang, Q. (2016). "Effects of steam explosion on bagasse specific surface area and grafting degree of acrylamide-grafted bagasse," BioRes. 11(3), 6185-6192.AbstractArticlePDF
    The effect of steam explosion pretreatment conditions, such as steam explosion pressure, maintained pressure time, and bagasse water content, on bagasse specific surface area were investigated through single-factor experiments. After determining the optimal pretreatment conditions, bagasse graft acrylamide was prepared by grafting polymerization reaction of the acrylamide monomer onto the pretreated bagasse. The effects of surface area on the grafting degree were analyzed. Results showed that the grafting degree increased with increasing specific surface area. The optimized steam explosion pretreatment conditions were as follows: steam explosion pressure, 2.0 MPa; pressure maintaining time, 60 s; and bagasse water content, 25%.
  • Researchpp 6193-6210Lin, P. Q., Zhou, J. H., Song, X., and Wang, S. (2016). "Kinetics of the formation of saccharides and fermentation inhibitors during the hot-compressed water pretreatment of cassava residue," BioRes. 11(3), 6193-6210.AbstractArticlePDF

    A mathematical description was developed for production of saccharides and fermentation inhibitors during the hot-compressed water pretreatment of cassava residue. Pretreatment was conducted at 150 °C, 160 °C, 170 °C, and 180 °C, and reaction times ranged from 0 to 70 min. The formation of saccharides and four main inhibitors (furfural (F), hydroxymethylfurfural (HMF), acetic acid, and formic acid) were studied. A model for predicting the concentrations of F and HMF (CF and CHMF, respectively) as functions of H+ concentration was established. Furthermore, kinetic models were built after introducing the hydrogen ion concentration index mi. Hydrogen ion concentration had a dramatic effect on the dissolution of pentosan but did not greatly affect the dissolution of hexosan or the degradation of hexose or pentose. Additionally, the activation energies for the formation of pentose or hexose were lower than the degradation energies. The coefficients of determination (R2) of the kinetic models for predicting the yield of the four compounds (pentose, hexose, furfural, and HMF) were higher than 0.923. These kinetic models provided a theoretical foundation and technical support for controlling the production of the main carbohydrates and fermentation inhibitors.

  • Researchpp 6211-6231Barton-Pudlik, J., and Czaja, K. (2016). "Conifer needles as thermoplastic composite fillers: Structure and properties," BioRes. 11(3), 6211-6231.AbstractArticlePDF

    This study describes the properties of thermoplastic polymer composites based on polyethylene (of low and high density) and ethylene-propylene copolymers using various types of conifer needles (pine, spruce, fir, and cedar) as fillers. For the needles, thermogravimetric analysis (TGA) and TGA/Fourier transform infrared spectroscopy (TGA/FTIR) were performed to investigate their structures and thermal resistance, as required for the composite processing methods. Moreover, structural differences were studied for the analyzed fillers and composite materials (FTIR). The results were compared with the values obtained for composites with conifer wood flour. Composites with conifer needles (pine) had increased water absorption and similar strength properties. However, irrespective of the degree of filling, composites with pine needles were positively characterized by the highest melt mass flow rate (MFR) values and showed a slightly better impact resistance than composites filled with other flours. Thus, shredded coniferous needles with sufficient thermal resistance could be successfully used as fillers in composites. This conclusion was based on thermoplastic polymers as an alternative and/or supplement to the wood flour used in the manufacture of wood-polymer composites.

  • Researchpp 6232-6243Jiang, X. Y., Lu, Q., Ye, X. N., Hu, B., and Dong, C. Q. (2016). "Experimental and theoretical studies on the pyrolysis mechanism of β-1-type lignin dimer model compound," BioRes. 11(3), 6232-6243.AbstractArticlePDF
    A β-1-type lignin dimer, 1,2-bis(3,5-dimethoxyphenyl)propane-1,3-diol was employed as a model compound in this study. The pyrolysis mechanisms and formation pathways of the pyrolytic products were investigated by using density functional theory (DFT) calculations and analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Four possible initial pyrolysis mechanisms were proposed, including the Cα-Cβ homolysis mechanism and three concerted decomposition mechanisms (1, 2, and 3). Results indicated that the lignin dimer decomposed via two concerted decomposition mechanisms, forming 3,5-dimethoxybenzaldehyde, 1,3-dimethoxy-5-vinylbenzene, 3-hydroxy-5-methoxybenzaldehyde, and 3-methoxybenzaldehyde. 3,5-Dimethoxybenzaldehyde was the major product, accounting for greater than 50% of all pyrolytic products. In addition to the two concerted decomposition mechanisms, Cα-Cβ homolysis was a secondary pyrolysis mechanism during the lignin dimer pyrolysis process, and the pyrolytic products included 3,5-dimethoxybenzyl alcohol, 3,5-dimethoxyphenethyl alcohol, 1,3-dimethoxybenzene, and 1,3-dimethoxy-5-methylbenzene. A third concerted decomposition mechanism was judged to be the least likely pathway to occur because of the high activation energy requirement.
  • Researchpp 6244-6253Wei, G., Zuo, H. F., Guo, Y. R., and Pan, Q. J. (2016). "Synthesis of ZnO with enhanced photocatalytic activity: A novel approach using nanocellulose," BioRes. 11(3), 6244-6253.AbstractArticlePDF

    Well-crystallized and hexagonal wurtzite ZnO was synthesized with nanocellulose using a facile hydrothermal method. Many highly active (001) facets were retained in the obtained ZnO nanocrystals, presumably due to interaction between the polar facet of ZnO and the nanocellulose. Given its effective surface area, the synthesized ZnO exhibited good photocatalytic activity of degrading methylene blue. Its degradation efficiency reached 94.4% within 30 min (UV irradiation power of 6 W), which was 34% higher than that of Degussa TiO2 P25. The ZnO photocatalyst also exhibited excellent reusability, confirmed by no obvious abatement after its being re-used for 8 cycles. These ZnO nanomaterials were synthesized using renewable nanocellulose derived from cotton. This environmentally friendly and cost-effective approach is anticipated to be applied in the future synthesis of small-sized ZnO photocatalysts.

  • Researchpp 6254-6266Chen, M. J., Feng, J., and Shi, Q. S. (2016). "Thermal stability of sugarcane bagasse derivatives bearing carboxyl groups synthesized in ionic liquid," BioRes. 11(3), 6254-6266.AbstractArticlePDF

    To illuminate changes in the thermal stability of lignocellulosic biomass by homogeneous chemical modification in ionic liquids, sugarcane bagasse derivatives bearing carboxyl groups were prepared in ionic liquids. Fourier transform infrared (FT-IR) spectroscopy and solid-state nuclear magnetic resonance (NMR) confirmed the chemical structure of the derivatives. Sugarcane bagasse derivatives with degree of substituted OH as high as 9.93 mmol/g were achieved. The homogeneous esterification was demonstrated to be a more efficient approach than heterogeneous ones. Based on thermogravimetric analysis, the onset degradation temperature of sugarcane bagasse decreased dramatically to 185 °C, 160 °C and 140 °C, using succinic anhydride, maleic anhydride, and phthalic anhydride as reagent, respectively. A first-order degradation kinetic model was applied to obtain the degradation activation energies of sugarcane bagasse. The results showed that homogeneous chemical modification significantly decreased the thermal stability of sugarcane bagasse by reducing the onset degradation temperature and degradation activation energies.

  • Researchpp 6267-6285Mkhize, T., Mthembu, L. D., Gupta, R., Kaur, A., Kuhad, R. C., Reddy, P., and Deenadayalu, N. (2016). "Enzymatic saccharification of acid/alkali pre-treated, mill-run, and depithed sugarcane bagasse," BioRes. 11(3), 6267-6285.AbstractArticlePDF

    In South Africa, approximately 3 × 106 tons of sugarcane bagasse is produced annually by 14 factories located on the north coast of KwaZulu-Natal. It is one of the most readily available lignocellulosic materials for ethanol production through enzymatic saccharification and hydrolysis. Pre-treatment enables disruption of the naturally resistant structure of lignocellulosic biomass to make the cellulose accessible to hydrolysis for conversion to biofuels. In this study, pre-treatment of depithed bagasse and mill-run bagasse was done using acid (3% H2SO4 v/v) followed by alkali (4% NaOH w/v), and the pre-treated solid was subjected to enzymatic hydrolysis. The effects of different conditions for enzymatic saccharification such as enzyme dose, reaction time, and amount of surfactant were studied in detail. The pre-treated substrate (10% w/v) when hydrolysed using 30 FPU/gds/40 FPU/g dry substrate (gds) with 0.4% (v/v) Tween® 80 for 20 h resulted in 608 mg/gds (depithed bagasse) and 604 mg/gds (mill-run bagasse) total reducing sugars.

  • Researchpp 6286-6298Cellatoğlu, N., and İlkan, M. (2016). "Effects of torrefaction on carbonization characteristics of solid olive mill residue," BioRes. 11(3), 6286-6298.AbstractArticlePDF

    Torrefaction is an important biomass pretreatment method that impacts fuel characteristics of biomass, specifically during the torrefaction process. Besides improving the fuel characteristics of biomass, torrefaction also contributes to increased quality of liquid and gaseous energy carriers obtained from fast pyrolysis and gasification. In this study, the effect of torrefaction on the solid energy carrier biochar, produced by carbonization, was studied by using solid olive mill residue (SOMR) as raw biomass. The carbonization characteristics of SOMR and torrefied SOMR (tSOMR) were compared by using ultimate and proximate analysis results. The higher heating value (HHV) and energy yields of biochars produced from SOMR and tSOMR were compared. The results showed that torrefaction contributed to the reduction of energy given to the biomass during the carbonization process by decreasing the holding time.

@BioResJournal

54 years ago

Read More