NC State
BioResources
  • Reviewpp 2108-2124Rezania, S., Md Din, M. F., Eva Mohamad, S., Sohaili, J., Mat Taib, S., Mohd Yusof, M. B., Kamyab, H., Darajeh, N., and Ahsan, A. (2017). "Review on pretreatment methods and ethanol production from cellulosic water hyacinth," BioRes. 12(1), 2108-2124.AbstractArticlePDF
    Lignocellulosic biomass resources are renewable materials that can be converted to fermentable sugars and subsequently into ethanol. Water hyacinth (Eichhornia crassipes) is a cellulosic aquatic plant that has high carbohydrates, low lignin content, and notable reducing sugars content in its structure. Based on the literature review in the case of water hyacinth, the most frequently used pretreatment methods were acid and alkali, while ionic liquid and microwave-assisted methods were used rarely. The dominant sugars were glucose, xylose, galactose, arabinose, and mannose. Based on the findings, cellulase and S. cerevisiae were mostly used for enzymatic hydrolysis and fermentation of water hyacinth to ethanol, respectively. This review presents the recent studies in pretreatment, hydrolysis, and fermentation of water hyacinth biomass into ethanol.
  • Reviewpp 2125-2142Zhao, J., and Kerekes, R. (2017). "A historical perspective of scientific advances in paper forming hydrodynamics: 1950-2000," BioRes. 12(1), 2125-2142.AbstractArticlePDF
    This paper reviews key advances in understanding the hydrodynamics of the forming section of papermaking during the years 1950 to 2000. Over this period papermaking advanced from rather slow-speed Fourdrinier machines to modern high-speed twin-wire formers. The advances are described in the context of technical problems faced at the time to increase machine speeds and improve paper properties. The scientific work and advances in machine design contributed greatly to the marvel of modern papermaking, which now includes machines 10 m wide operating at speeds over 100 km/h.
  • Reviewpp 2143-2233Hubbe, M. A., Ferrer, A., Tyagi, P., Yin, Y., Salas, C., Pal, L., and Rojas, O. J. (2017). "Nanocellulose in thin films, coatings, and plies for packaging applications: A review," BioRes. 12(1), 2143-2233.AbstractArticlePDF

    This review article was prompted by a remarkable growth in the number of scientific publications dealing with the use of nanocellulose (especially nanofibrillated cellulose (NFC), cellulose nanocrystals (CNC), and bacterial cellulose (BC)) to enhance the barrier properties and other performance attributes of new generations of packaging products. Recent research has confirmed and extended what is known about oxygen barrier and water vapor transmission performance, strength properties, and the susceptibility of nanocellulose-based films and coatings to the presence of humidity or moisture. Recent research also points to various promising strategies to prepare ecologically-friendly packaging materials, taking advantage of nanocellulose-based layers, to compete in an arena that has long been dominated by synthetic plastics. Some promising approaches entail usage of multiple layers of different materials or additives such as waxes, high-aspect ratio nano-clays, and surface-active compounds in addition to the nanocellulose material. While various high-end applications may be achieved by chemical derivatization or grafting of the nanocellulose, the current trends in research suggest that high-volume implementation will likely incorporate water-based formulations, which may include water-based dispersions or emulsions, depending on the end-uses.

  • Reviewpp 2234-2248Hu, Z., Tang, C,. He, Z., Lin, J., and Ni, Y. (2017). "1-methylcyclopropene (MCP)-containing cellulose paper packaging for fresh fruit and vegetable preservation: A review," BioRes. 12(1), 2234-2248.AbstractArticlePDF

    The freshness and safety of fruits and vegetables is important in our daily life. Paper products are often used for shipping, wrapping, and decoration in the retail for fruits and vegetables. When these paper products are modified with active substances, they can offer additional functions other than just packaging. Thus, introducing 1-methylcyclopropene (1-MCP) into paper products can impart a preservation function for fruits and vegetables. 1-MCP is an excellent and eco-friendly inhibitor of ethylene that can effectively retard the ripening of fruits and vegetables. This article reviews the ripening process induced by ethylene, the inhibition mechanism of 1-MCP, and the existing technologies and products for 1-MCP utilization. Novel active paper packaging products via the use of encapsulated 1-MCP complexes may have a great potential for commercialization. Such packaging containing 1-MCP active paper could be effective in prolonging the shelf-life and improving the quality of the product during the storage, shipping process, and retail market, and can be attractive economically, socially, and environmentally.

@BioResJournal

55 years ago

Read More