NC State
  • Researchpp 4689-4704Song, H., Yang, J., Yang, Y., Yang, Q., and Hu, J. (2022). "Characterization of cellulose-nanofiber-modified fibrillated lyocell fiber separator," BioResources 17(3), 4689-4704.AbstractArticlePDF

    A fibrillated lyocell fiber-based separator was prepared using lyocell fibers and was modified with cellulose nanofibers. The effects of the cellulose nanofiber addition on the tensile properties, electrical properties, pore structure, liquid absorption properties, and equivalent series resistance of the separators were studied. It was found that adding an appropriate amount of cellulose nanofibers to the fibrillated lyocell fiber separator can improve the tensile strength, elongation at break, breakdown voltage, and equivalent series resistance value of the separator; reduce the pore size and porosity of the separator; and improve the pore size distribution. Moreover, the separator modified with 4% cellulose nanofibers yielded a favorable combination of properties, with a tensile strength of 0.645 kN/m, a mean flow pore diameter of 0.771 μm, a porosity of 88.4%, a capillary rise in paper of 30.7 mm/10 min, and an equivalent series resistance value of 2.46 Ω.

  • Reviewpp ###-###Zhou, Y., Xu, W., Pan, Y., Wang, F., Hu, X., Lu, Y., and Jiang, M. (2022). "Deep eutectic-like solvents: Promising green media for biomass treatment and preparation of nanomaterials," BioResources 17(3) Page numbers to be added.AbstractArticlePDF

    Deep eutectic-like solvents (DESs) are recognized as environmentally benign media with highly tunable structures and properties. The usage of DES is promising in the field of biomass treatment and transformation, including pretreatment, selective dissolution, and separation of the main components. It serves as a green medium for modification of the biomass components, as well as preparation of biomass-derived nanomaterials. In this paper, the development on DES, including composition, properties, and characteristics was studied. The application of DES in biomass-derived nanomaterials is especially discussed. This review intends to provide references for adopting DES to improve biomass-based environmentally friendly nanomaterials.

  • Researchpp 4705-4712Bouaphavong, D., Jarusombuti, S., Veenin, T., Phonetip, K., and Soukphaxay, K. (2022). "Effects of thermal treatment on physical properties of teak veneer (Tectona grandis)," BioResources 17(3), 4705-4712.AbstractArticlePDF

    Thermo treatment on veneer has been recognized as environmentally friendly and can modify wood properties. The objectives of this study were to investigate mass loss of thermo-teak veneer, to assess the density changes, and to examine shrinkage based on different levels of temperature at different time lengths. The temperatures were 180, 200, 220, and 240 °C applied at three different lengths of time, i.e., 4, 8, and 12 min on teak veneer sheets. The results showed that the mass loss at the temperature of 180, 200, 220, and 240 °C were not significantly different. Density changes were significant depending on the level of temperatures. Percentage of density decrease changed from 3.85% to 15.69% at temperatures ranging from 180 to 240 °C but the length of time (4, 8, and 12 min of thermal treatment) did not have a significant effect. The mass loss ranged from 5.90% to 17.66%.

  • Researchpp 4713-4729Birinci, E., Karamanoğlu, M., Kesik, H. I., and Kaymakci, A. (2022). "Effect of heat treatment parameters on the physical, mechanical, and crystallinity index properties of Scots pine and beech wood," BioResources 17(3), 4713-4729.AbstractArticlePDF

    Effects of heat treatment parameters on the physical properties, mechanical properties, and crystallinity index of Scots pine and beech wood were investigated. Scots pine (Pinus sylvestris L.) and beech (Fagus orientalis Lipsky) sapwood samples were prepared in 2 cm × 2 cm × 36 cm dimensions by considering the physical and mechanical tests. The samples were heat-treated for 2 h and 4 h at 150 °C, 180 °C, and 210 °C in an atmospheric environment. The shrinking and swelling percentages of all samples were calculated. The compressive strength, bending strength, modulus of elasticity (MOE), and hardness tests were carried out. X-ray diffraction (XRD) was performed to calculate the crystallinity index values. As a result of the study, it was determined that heat treatment generally had a positive effect on the physical properties of Scots pine and beech samples. It was observed that the bending strength of the wood samples decreased up to 180 °C as the temperature increased and then increased. It was determined that the MOE of the Scots pine and beech wood decreased with the heat treatment. As the heat treatment temperature and time were increased, the crystallinity index values initially increased partially and then decreased.

  • Researchpp 4730-4744Turcov, D., Barna, A. S., Apreutesei (Ciuperca), O. T., Trifan, A., Puitel, A. C., and Suteu, D. (2022). "Valorization of bioactive compounds from residual saffron biomass (Crocus sativus L.) to obtain high value added dermato-cosmetic products," BioResources 17(3), 4730-4744.AbstractArticlePDF

    The valorization of indigenous flora waste by extraction of biologically active compounds has potential applications in the medical and cosmetic fields. The polyphenols and flavonoids extracted from this waste are valuable compounds for the manufacture of new cosmetic and/or dermato-cosmetic formulas to protect the skin from oxidative stress. This study obtained plant extracts from saffron waste—petals, tepals, and superior portions of stem—using different solid-liquid extraction techniques. The influence of some physical operating parameters was studied (extraction time, solid/liquid ratio, solvent extraction composition). The extraction method performance was assessed by the value of the extraction yields. The obtained extracts were characterized by the content of polyphenols and flavonoids, and the antioxidant activity determined with the DPPH and ABTS methods and the UV-VIS spectrometry. Some emulsions O/W were prepared and preliminarily characterized (pH, sensory analysis, stability after centrifugation and storage). The obtained results showed that the incorporation of this natural extract did not negatively affect the stability of the studied cosmetic formulations and advanced characterization (microbiological control of contamination, rheology studies and in vitro and in vivo studies) can be continued in order to implement a new product.

  • Researchpp 4745-4762Duan, R., Wang, Y., Zhao, L., Yun, X. D., and Zhou, N. (2022). "Prediction of wood moisture content based on THz time-domain spectroscopy," BioResources 17(3), 4745-4762.AbstractArticlePDF

    A new method for predicting wood moisture content using terahertz (THz) time-domain spectroscopy (TDS) is presented in this paper. The THz wave is a promising method in measuring wood moisture content due to its sensitivity to water, impressive penetration ability in wood, and no destructive effect on wood interior. In this study, the selected wood, Douglas fir (Pseudotsuga menziesii), with different moisture content was studied. THz-TDS was used to extract the optical parameter of the sample. The THz refractive index and absorption coefficient spectrum of the wood were calculated. The first and second derivatives of the absorption coefficient spectrum were processed to obtain the first and second derivative spectra. The successive projections algorithm (SPA) was used to select the characteristic frequency for the THz absorption coefficient spectrum and its first and second derivative spectrum of the wood. A regression prediction model of wood moisture content was established by partial least squares regression (PLS). The results showed that the proposed model based on the second derivative spectrum had the best prediction effect for the moisture content of wood.

  • Researchpp 4763-4780Al Abboud, M. A., Al-Rajhi, A. M. H., Shater, A.-R. M., Alawlaqi, M. M., Mashraqi, A., Selim, S., Al Jaouni, S. K., and Abdelghany, T. M. (2022). "Halostability and thermostability of chitinase produced by fungi isolated from salt marsh soil in subtropical region of Saudi Arabia," BioResources 17(3), 4763-4780.AbstractArticlePDF

    Strategies based on halo- and thermostable enzymes are promising and attractive for biotechnological applications. Three fungal isolates, namely Aspergillus flavus, Cladosporium cladosporioides, and Alternaria alternata, and were subjected to chitinase production using a medium with different concentrations of NaCl up to 10%. C. cladosporioides was found to be the main chitinase producer at high concentration of NaCl; therefore, its identification was confirmed using 18S rDNA. The highest chitinase production (88.67 U/mL) was obtained by C. cladosporioides, followed by A. flavus (76.17 U/mL), and A. alternata (70.67 U/mL) at 5% NaCl, while their production without NaCl was 35.07 U/mL, 22.83 U/mL, and 21.33 U/mL, respectively. Thermal stability of chitinase was recorded at 50 °C at 20 min. Chitinase halostability at 20 min indicated that 10% NaCl was the optimum level, with activity 88.3 U/mL. Safranin dye decolorization by C. cladosporioides was enhanced to 88.25% via the addition of 5% NaCl to growth medium containing chitin. The inhibitory activity of chitinase was detected against C. lunata and F. oxysporium with or without NaCl. Culex pipiens larvae were more affected by C. cladosporioides chitinase produced at 5% than 10% NaCl. Energy scores of the molecular docking investigations confirmed the insecticidal activity of chitinase against C. pipiens larvae.

  • Researchpp 4781-4792Ciritcioglu, H. H., and Özbay, G. (2022). "Characterization and adhesive performance of phenol-formaldehyde resol resin reinforced with carbon nanotubes," BioResources 17(3), 4781-4792.AbstractArticlePDF

    Chemical, physical, thermal properties and bonding quality of phenol-formaldehyde resol resin (PF) synthesized with single-walled carbon nanotubes (SWCNTs) was evaluated at varying ratios from 1 wt% to 5 wt%. The effect of the SWCNTs addition on thermal and chemical properties of the PF resins was characterized by thermal gravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy, respectively. FT-IR analysis revealed that the peaks of the modified PF resol resins were similar to those of the reference (laboratory-produced) PF resol resin. These similarities indicated that the synthesis of the resins with phenol, formaldehyde, and carbon nano tubes was successful. The PF resins modified using SWCNTs demonstrated higher thermal stability than the reference PF resin. It was found that the bonding strength of the PF resin containing 3 wt% SWCNTs could reach 12.45 N/mm2 in dry conditions and 7.57 N/mm2 in wet conditions. The bonding test results demonstrated that the SWCNTs were able to improve the bonding performance of the resin under dry and/or wet conditions. This work presents an effective method to improve PF resins with SWCNTs reinforcement for use in the wood and/or polymer composite industries.

  • Researchpp 4793-4805Cao, C., Lv, H., Yue, X., Tian, G., Cao, R., Zuo, L., Xie, F., and Xu, B. (2022). "Bamboo Pleioblastus chino var. hisauchii characteristics before and after flowering," BioResources 17(3), 4793-4805.AbstractArticlePDF

    Pleioblastus chino var. hisauchii is an important ornamental bamboo species that rarely flowers. Studies on the change in its material properties before and after flowering were lacking. In this paper, the anatomical, chemical, and mechanical properties of bamboo culms before and after flowering were studied by using the method of bio-wood science. The results showed that after flowering, the morphology and proportion of the fiber, vessel and vascular bundle decreased, and the openings of pits in the vessel wall were enlarged significantly; the contents of the main components such as extractives, lignin, holocellulose, cellulose and pentosan rose, while the ash content dropped. There was a decrease in density and modulus of rupture, and a pronounced fall in modulus of elasticity, while the microfibril angle and crystallinity increased. In general, the strength of bamboo flowering culms decreased and the ability to transport nutrients increased, which were closely related to the changes in internal structure and properties. This meant that bamboo flowering may be monitored or predicted by significant changes in some properties (such as pits and modulus of elasticity) and provide a reference for further research on the mechanism of flowering senescence and delayed flowering in bamboo.

  • Researchpp 4806-4815Naim, A., Tan, C. S. Y., and Liew, F. K. (2022). "Thermal properties of bamboo cellulose isolated from bamboo culms and shoots," BioResources 17(3), 4806-4815.AbstractArticlePDF

    The isolation of cellulosic fibers and their applications in composite materials have drawn considerable interest due to their outstanding thermal and mechanical properties combined with light-weight character, biodegradability, and renewability. Bamboo is a fast-growing plant, and its properties include sustainability and excellent tensile strength. In this study, bamboo fibers from the culms and shoots of Dendrocalamus asper were treated with 5 wt% sodium hydroxide and subjected to ultra-sonication for 5 hours to obtain bamboo cellulose. Infra-red spectra showed that lignin and hemicelluloses were removed after treatment. With the removal of amorphous cellulosic regions, both cellulosic fibers exhibited higher decomposition temperatures than the raw fibers. Thermogravimetric analysis confirmed that both types of bamboo cellulose had a peak decomposition temperature at 408 °C. Cellulose isolated from the bamboo shoots exhibited similar chemical and thermal properties, indicating its huge potential as an alternative to mature bamboo culms.