NC State
BioResources
  • Researchpp 5258-5267Darabi, P., Gril, J., Thevenon, M. F., Karimi, A. N., and Azadfalah, M. (2012). "Evaluation of high density polyethylene composite filled with bagasse after accelerated weathering followed by biodegradation," BioRes. 7(4), 5258-5267.AbstractArticlePDF

    Wood-plastic composites (WPC) have many applications as structural and non-structural material. As their outdoor application becomes more widespread, their resistance against weathering, particularly ultraviolet light and biodegradation becomes of more concern. In the present study, natural fiber composites (NFPC) made of bagasse and high density polyethylene, with and without pigments, were prepared by extrusion and subjected to accelerated weathering for 1440 h; then weathered and un-weathered samples were exposed to fungal and termite resistance tests. The chemical and surface qualities of samples were studied by ATR-FTIR spectroscopy, colorimetry, contact angle, and roughness tests before and after weathering. Using bagasse as filler does reduce the discoloration of weathered samples. Adding pigments may reduce the effect of weathering on lignin degradation, although it favors polymer oxidation, but it increases the weight loss caused by fungi. Despite the high resistance of samples against biological attack, weathering triggers attack by termites and fungi on the surface and causes surface quality loss.

  • Researchpp 5268-5278Lian, H.-L., You, J.-X., Huang, Y.-N., and Li, Z.-Z. (2012). "Effect of refining on delignification with a lacasse/xylanase treatment," BioRes. 7(4), 5268-5278.AbstractArticlePDF

    Previous research has demonstrated that a laccase/xylanase system (LXS) from white-rot fungus (Lentinus lepideus) has the same ability to delignify as a laccase/mediator system (LMS). In order to enhance delignification ability of LXS treatment, the effect of refining on delignification with LXS treatment of Masson pine (Pinus massoniana) pulp was investigated by refining the pulp in a PFI mill to different revolutions (14,000/21,000/35,000/42,000/56,000) prior to LXS treatment (enzyme dosage 5/10/15IU/g o.d. pulp). The results indicated that both kappa number and yield of the LXS treated pulp decreased with increasing refining. A substantial delignification without severe yield loss could be achieved by moderate refining prior to LXS treatment. The SEM images suggested that refining increased the accessibility of the material to enzymes and thereby enhanced the delignification ability of LXS. The small cellulase activity detected in the LXS had little effect on the viscosity of the treated pulp even at high enzyme dosage.

  • Researchpp 5279-5289Chen, H., Lang, Q., Xu, Y., Feng, Z., Wu, G., and Pu, J. (2012). "Effect of thermal treatment with methylolurea impregnated on poplar wood," BioRes. 7(4), 5279-5289.AbstractArticlePDF

    The aim of this research was to study the physical and chemical performance of poplar wood treated by chemi-thermal modification. A thermal treatment was used to catalyze the effect of the methylolurea impregnated pre-treatment by curing the poplar wood at 160 ° C under atmospheric conditions. The results showed that the thermal treatment played an important role in the chemical and mechanical performance. Such an approach not only can significantly reduce the hygroscopicity, but also can increase the bending strength and compressive strength parallel to grain. The positions of the XRD peaks did not change, which indicated that the structure of cellulose was not noticeably affected by the thermal treatment. The FT-IR analysis showed that the intensity of hydroxyl and carbonyl absorption peaks decreased significantly, which indicated that the NH-CH2-OH of methylolurea reacted with the wood carboxyl (C=O) and hydroxyl (-OH). The TGA showed that the thermal stability of treated wood improved. The SEM showed that the cell wall and vessels were filled with impregnated chemicals.

  • Researchpp 5290-5303Coman, G., Leuştean, I., Georgescu, L., and Bahrim, G. (2012). "Optimization of protein production by Geotrichum candidum MIUG 2.15 by cultivation on paper residues, using response surface methodology," BioRes. 7(4), 5290-5303.AbstractArticlePDF

    Response surface methodology (RSM) based on the 23 factorial central composite design (CCD) was used to optimize the biotechnological conditions for growth and protein production by a selected fungal strain Geotrichum candidum MIUG 2.15, by solid-state cultivation on a semisolid medium based on a mixture of paper residues, i.e. office paper, newspaper, and cardboard, mixed in a ratio of 1:1:1(w/w), supplemented with cheese whey waste and complex manure. Three independent variables, the solid:liquid ratio, the concentration of complex manure, and cultivation time, were evaluated to determine their correlative effect on biomass production and protein biosynthesis. The optimal conditions for obtaining a maximum protein yield of 9.53% w/w dry mass were the following: the complex manure concentration of 0.5%, the solid:liquid ratio of 1:5, and the growth time of 10 days.

  • Researchpp 5304-5311Cserta, E., Hegedűs, G., and Németh, R. (2012). "Evolution of temperature and moisture profiles of wood exposed to infrared radiation," BioRes. 7(4), 5304-5311.AbstractArticlePDF

    In this article we studied the mechanism of wood drying using infrared (IR) heat transfer. Norway spruce (Picea abies (L.) Karst.) samples of 50 mm and 200 mm thickness were exposed to IR radiation, and the temperature and moisture profiles were recorded at the surface and at the core of the samples under controlled experimental conditions. It is proposed that the moisture transport in wood during drying is governed by osmotic effects. Based on such a hypothesis, the temperature stagnation was explained by a lower localized pressure at the core, which reduced the boiling point temperature of water. As moisture is drawn away due to osmosis from the central region, it cannot fill the empty lumens again; therefore, the pressure decreases locally. The evaporation of the internal moisture is brought about by a partial vacuum resulting in the disappearance of the liquid water.

  • Researchpp 5312-5318Li, S., Freitag, C. M., Morrell, J. J., and Okabe, T. (2012). "Antifungal effects of hinokitiol and its sodium salt for wood protection," BioRes. 7(4), 5312-5318.AbstractArticlePDF

    The ability of natural and synthetic hinokitiol, as well as a water soluble derivative (hinokitiol sodium salt), to protect wood against fungal attack was examined. Synthetic and natural hinokitiol provided similar protection. All three materials exhibited similar antifungal activity against Aspergillus niger and Penicillium citrinum on yellow poplar wafers at concentrations of 1 mg/mL or greater. Fungal attack by Gloeophyllum trabeum or Trametes versicolor was completely inhibited in soil block tests in wood treated with any of the three extracts at concentrations of 20 mg/mL or greater. The water soluble hinokitiol sodium salt was highly susceptible to leaching, and blocks subjected to leaching had little resistance to fungal attack. The results suggest that further formulation development will be necessary to produce a water-soluble hinokitiol system that can resist leaching and retain biological activity.

  • Researchpp 5319-5332Yoon, L. W., Ngoh, G. C., and Chua, A. S. M. (2012). "Simultaneous production of cellulase and reducing sugar from alkali-pretreated sugarcane bagasse via solid state fermentation," BioRes. 7(4), 5319-5332.AbstractArticlePDF

    This study optimized alkali pretreatment of sugarcane bagasse (SCB) and investigated the potential of alkali-pretreated SCB in producing cellulase and reducing sugar by a white-rot fungus, P. sanguineus, via solid state fermentation (SSF). The fermentability of the reducing sugar produced during SSF was examined by co-culturing yeast, Saccharomyces cerevisiae, with P. sanguineus. Central composite design (CCD) was applied to optimize the pretreatment based on reducing sugar yield obtained from enzymatic hydrolysis of the pretreated SCB. The model developed from CCD fitted the data well, and the optimized conditions for alkali pretreatment were 128 °C, 0.62 M NaOH, and 30 min with a reducing sugar yield of 97.8%. The alkali-pretreated SCB after washing and drying was cultivated with P. sanguineus during SSF. It was found that cellulase and reducing sugar can be produced simultaneously from this SSF system. The maximum cellulase activities determined from filter paper assay (FPase), carboxylmethylcellulase (CMCase) assay and β-glucosidase assay were 0.02 IU/mL, 0.11 IU/mL, and 0.13 IU/mL on day 8, day 3, and day 6 of cultivation, respectively. The maximum reducing sugar concentration of 19.9 mg/g pretreated SCB was obtained on day 4 of SSF. The reducing sugar produced was converted into ethanol upon the addition of yeast into the SSF system. Evidently, the reducing sugar acquired can be further utilized to produce other valuable products in subsequent processes.

  • Researchpp 5333-5345Soo, M. C., Wan Daud, W. R., and Leh, C. P. (2012). "Improvement of recycled paper's properties for the production of braille paper by impregnation with low grade cellulose acetate: Optimization using response surface methodology (RSM)," BioRes. 7(4), 5333-5345.AbstractArticlePDF

    Paper dust is a kind of cellulosic waste that is generated by converting operations in paper mills. It was derived to a low-grade cellulose acetate in this study. Papers made from recycled fiber were then impregnated with the resultant cellulose acetate. Effects of impregnation conditions on the paper properties were statistically investigated by employing central composite design (CCD) based response surface methodology (RSM). Four response variables, namely density, burst index, smoothness, and rate of surface wettability were analyzed. Polynomial estimation model of each response was developed as functions of three independent variables, which are pressing temperature (T), dipping time (D), and concentration of cellulose acetate (C). The paper which was impregnated based on the calculated optimum condition (T: 163 °C, D: 2.8 minutes, and C: 2.7 percent), possessed a density of 0.5450 g/cm3, rate of surface wettability of 0.012°/s, burst index of 2.84 kPa m2/g, and paper smoothness of 475 mL/min. There was no significant difference between the experimental values and the predicted values calculated from estimation models. The cellulose acetate impregnated Braille papers made from recycled fibre was found to have better properties than those of commercial Braille paper in terms of rate of surface wettability and burst index.

  • Researchpp 5346-5354Kurt, R., and Cil, M. (2012). "Effects of press pressures on glue line thickness and properties of laminated veneer lumber glued with phenol formaldehyde adhesive," BioRes. 7(4), 5346-5354.AbstractArticlePDF

    The effects of press pressure on glue line thickness (GLT) and properties of laminated veneer lumbers (LVLs) manufactured from half-round sliced I-214 hybrid poplar clone veneers with phenol formaldehyde adhesives were determined. The results showed that press pressures significantly influenced GLT and properties of LVLs. Results of higher specific gravity, thickness swelling ratio, and mechanical properties, but lower GLT and water absorption ratio were attributed to higher press pressure uses. Optimum properties were obtained by using a press pressure of 10 kg cm-2 in relation to GLT and properties of LVLs. Significant relationships were found between GLT and mechanical properties. GLT may provide reliable information to determine wood bonding quality and may be used for non-destructive evaluation of mechanical properties of wood composites in the future.

  • Researchpp 5355-5366Nguyen, C. T., Wagenführ, A., Phuong, L. X., Dai, V. H., Bremer, M., and Fischer, S. (2012). "The effects of thermal modification on the properties of two Vietnamese bamboo species, Part I: Effects on physical properties," BioRes. 7(4), 5355-5366.AbstractArticlePDF

    Bamboo is a very interesting bioresource for use as a building material because of its properties of strength in combination with low density. However, its susceptibility to fungi and insects is problematic for its usage. Thermal modification is used in Vietnam to improve the durability and dimensional stability of bamboo. The thermal modification causes many changes related to the physical properties of bamboo, e.g., mass, color, and equilibrium moisture content (EMC). All these changes are dependent on the modification conditions (modification temperature and duration). The mass loss (ML), the color difference (DE*ab), and the reduction of EMC (DEMC) were due to the thermal modification increase with higher temperature and/or longer duration. Therefore the temperature had greater influence than the modification duration. The changes were slight at 130 °C (ML: 0,3…0,6 %; DE*ab: 3…5; DEMC: 0,5…0,8 % ), moderate at 180 °C (ML: 1,5…4 %; DE*ab: 21…37; DEMC: 3,6…4,4 %), but very strong at 220 °C (ML: 14…16 %; DE*ab: 46…51; DEMC: 5,6…5,7%). There are close correlations between the changes mentioned above.

@BioResJournal

54 years ago

Read More