NC State
BioResources
  • Researchpp 2203-2213Xu, J., Lu, J., Evans, R., and Downes, G. M. (2014). "Relationship between ring width and tracheid characteristics in Picea crassifolia: Implication in dendroclimatology," BioRes. 9(2), 2203-2213.AbstractArticlePDF

    Ring width represents the total width of cells in a growing season. Relatively few studies have identified which of the parameters, cell number, size, or wall thickness is the greater contributor to variations in ring width. It is difficult to clearly explain the relationship between the climate in which a tree is located and the ring growth. In this study, the ring width and various tracheid characteristics (radial lumen diameter, double wall thickness, and number) in 298 rings of Picea crassifolia wood were investigated. Tree rings were quantitatively categorized based on their width into large, medium, and narrow classes. The tracheid number and lumen diameter were strongly correlated with annual ring width. The tracheid number had the strongest effect on the ring width. The effect of the tracheid number was three times larger than that of the lumen diameter. More earlywood cells were formed in larger rings, while larger earlywood cells were produced in years when narrow rings were formed. Wall thickness had no appreciable effect on ring width. The results of this study help to understand the relationship between the climate and the ring growth from the tree physiology perspective, when ring width is used as a climate proxy.

  • Researchpp 2214-2225Liu, H., Gao, J., Chen, Y., and Liu, Y. (2014). "Effects of moisture content and fiber proportion on stress wave velocity in Cathay poplar (Populus cathayana) wood," BioRes. 9(2), 2214-2225.AbstractArticlePDF

    Changes in longitudinal stress wave velocity measured during the drying process of Cathay poplar (Populus cathayana) wood at different moisture contents were investigated. The test was performed at five different positions from bark to pith on each part. Five bars, cut successively from bark to pith with different fiber proportions, were also tested. The corrected velocity was calculated by dividing the velocity by the fiber proportion to negate any possible effects of wood structure on the velocity. The results showed that the longitudinal stress wave velocity decreased with increasing moisture content. Such trends were more obvious when the moisture content was lower than the fiber saturation point (FSP). The longitudinal stress wave velocity increased with increasing fiber proportion. A linear relationship between the corrected velocity and the moisture content was observed. This linear relationship was similar to the relationship between the relative velocity and the moisture content.

  • Researchpp 2226-2236Si, C.-L., Wu, L., Shen, T., Huang, X.-F., Du, Z.-G., Ren, X.-D., Luo, X.-G., and Hu, W.-C. (2014). "Recovery of low-molecular weight galloyltannins from agricultural residue of Juglans sigillata dode seed husks and their tyrosinase inhibitory effect," BioRes. 9(2), 2226-2236.AbstractArticlePDF

    The phytochemical investigation, including fractionation and purification of 70% acetone extracts of Juglans sigillata seed husks, an agricultural residue, led to the isolation of five low-molecular weight galloyltannins. The structures of the extractives were elucidated as 1,2,6-tri-O-galloyl-β-D-glucose (1), 3,4,6-tri-O-galloyl-β-D-glucose (2), 2,3,4,6-tetra-O-galloyl-β-D-glucose (3), 1,2,3,4,6-penta-O-galloyl-β-D-glucose (4), and tannic acid (5), primarily based on their spectral (NMR and MS) and chemical evidence. Galloyltannins 1-5 showed strong inhibitory activity against mushroom tyrosinase, with IC50 values ranging from 35.27 to 76.37 μM; kojic acid, which was used as a positive control, had an IC50 value of 342.14 μM. It was further found that 1-5 inhibited melanin production and exhibited intracellular tyrosinase activity, as well as down-regulated mRNA and protein expression levels of tyrosinase, in B16F10 mouse melanoma cells. Therefore, the isolated extractives from seed husks of J. sigillata may serve as potential candidates for hyperpigmentation remediation and as skin-whitening agents in the cosmetics industry.

  • Researchpp 2237-2247Jin, Z., and Zhao, G. (2014). "Porosity evolution of activated carbon fiber prepared from liquefied wood. Part I: Water steam activation at 650 to 800 °C," BioRes. 9(2), 2237-2247.AbstractArticlePDF

    Activated carbon fiber is known as an excellent adsorbent material due to its well-developed pore structure. In this work, the porosity evolution of activated carbon fiber prepared from phenol liquefied wood with water steam activation at 650 to 800 °C for 20 to 260 min was examined by physical adsorption of N2 at -196 °C. By the series of activation processes, the specific surface area and pore volume were increased with the increase of activation time, most significantly by activation at 750 °C for 20 to 180 min and by activation at 800 °C for 20 to 260 min. The microporosity was gently and progressively developed with increasing activation time at 650 to 700 °C, while it was sharply developed at the early stage of activations at 750 to 800 °C, and then tended to almost stabilize. The mesoporosity was well developed only by activation at 800 °C for longer than 100 min. The pore size distributions were principally ultramicropores (0.5 – 0.7 nm) during activations at 650 to 700 °C. By activations at 750 to 800 °C, the supermicropores (0.7 to 2.0 nm) as well as mesopores (2 to 4 nm) became progressively more important as the activation time was increased.

  • Researchpp 2248-2258Liu, L., Wang, L., Yin, L., Song, W., Yu, J., and Liu, Y. (2014). "Effects of different solvents on the surface acidic oxygen-containing functional groups on Xanthoceras sorbifolia shell," BioRes. 9(2), 2248-2258.AbstractArticlePDF

    This study reports the preparation of a novel biomaterial from a forestry residue – Xanthoceras sorbifolia shell (XSS) – by solvent modification. The effects of acid and base (hydrochloric acerbic, acetic acid, sodium hydroxide, ammonia water) and some organic solvents (ethanol, acetone, ethyl acetate, chloroform, petroleum ether, and n-hexane) on the surface acidic functional groups (SAFGs) on XSS were investigated. The amount of SAFGs was quantified using acid and alkali chemical titration methods, and the characteristics of virgin XSS were compared with treated ones by FT-IR spectroscopy. It was found that acid solutions can increase the concentration of SAFGs, while alkaline solutions reduce it. The XSS treated in 0.5 M HCl has the largest number of total acidic functional groups and phenolic hydroxyl groups. The shell extracted with 2 M acetic acid has the highest concentration of carboxyl. The SAFG contents were remarkably increased by treatments with ethanol and acetone, due to the outstanding enhancement of phenolic hydroxyl. These changes in the SAFGs of XSS brought about by treatments with various solutions could be a theoretical foundation for modifying this residue to create a new type of highly efficient absorbent material.

  • Researchpp 2259-2273Wu, S., Shen, D., Hu, J., Zhang, H., and Xiao, R. (2014). "Intensive interaction region during co-pyrolysis of lignin and cellulose: Experimental observation and kinetic assessment," BioRes. 9(2). 2259-2273.AbstractArticlePDF

    Interactions between biomass constituents (cellulose, hemicelluloses, and lignin) under pyrolytic conditions have received more and more attention in recent years. A synthesized sample was prepared through mixing of cellulose and lignin with a mass:mass ratio of 1:1. The cellulose-lignin mixture (C-L-M) was heated from 20 to 800 °C using a thermogravimetric analyzer coupled with a Fourier transform infrared spectrometer (TG-FTIR). The presence of the cellulose-lignin complex was theoretically confirmed by the suggestion of a hydrogen bond network between cellulose- and lignin-related oligomers through the density functional theory (DFT) method. To estimate the strength of the interaction between cellulose and lignin in different regions, correlation coefficients r were employed to nominate three regions: region I (20 to 305 °C), in which lignin and cellulose were pyrolyzed into oligomers without interacting with one another; region II (305 to 432 °C), which was deemed the intensive interaction region, with an r value of about 0.2; and region III (432 to 800 °C), in which the pyrolysis of cellulose ceased and only lignin was further degraded. A kinetic scheme was also proposed to model the co-pyrolysis of cellulose and lignin.

  • Researchpp 2274-2288von Haartman, S., Heikkilä, E., Lange, C., and Fardim, P. (2014). "Potential applications of hybrid layered double hydroxide (LDH) particles in pulp and paper production," BioRes. 9(2), 2274-2288.AbstractArticlePDF

    Functionalization of papermaking pulp fibers using inorganic particles was investigated as a novel approach. Different layered double hydroxide (LDH) particles were used in peroxide bleaching of thermomechanical pulp (TMP) and in oxygen bleaching of eucalyptus kraft pulp. LDH particles were also tested as binding sites for optical brightening agents (OBA) that are commonly used in paper production. The surface chemistry of LDH-treated pulps was examined using X-ray photoelectron spectroscopy (XPS) and apparent contact angle with water. Adsorbed LDH was not detected by XPS on the fiber surfaces after the bleaching trials, but it had a clear impact on the processes. LDH particles modified with terephthalate anions decreased the consumption of hydrogen peroxide and increased opacity by 3 units in TMP. Unmodified LDH particles enhanced the selectivity in oxygen delignification of kraft pulp, leading to 10% gain in ISO brightness and reduction of 2 units in Kappa number in comparison with conventional processes. Paper strength properties were unaffected in the presented system. After bleaching with LDH, the amount of anionic groups on pulp surfaces was increased. Also, the retention of OBA onto TMP fibers was improved with modified LDH particles. LDH proved to have great potential for current and prospective applications in pulp and paper manufacture.

  • Researchpp 2289-2298Yang, X., Tian, G., Shang, L., Lv, H., Yang, S., and Liu, X. (2014). "Variation in the cell wall mechanical properties of Dendrocalamus farinosus bamboo by nanoindentation," BioRes. 9(2), 2289-2298.AbstractArticlePDF

    The in situ imaging nanoindentation technique was used to investigate the effect of age, culm height, and radial position on the cell wall mechanical properties of bamboo (Dendrocalamus farinosus) along the longitudinal direction of culms. The results indicated that among our four-sampled culm ages, the fiber cell wall had average values for the elastic modulus (MOE) and hardness (HL) of 18.56 GPa and 410.72 MPa, respectively. The ages of the culm had no significant effect on the observed MOE and HL among the 2-, 3-, 4-, and 5-year-old D. farinosus test specimens, with similar results observed at three different culm heights and radial positions. Furthermore, longitudinal MOE and HL values along the thickness of the cell wall were uneven, with average values for the middle lamella and the edge near the cavity only 20.97% to 29.78% and 9.22% to 31.71%, respectively, of the values found in the cell wall.

  • Researchpp 2299-2310Zhang, Z., Yue, J., Zhou, X., Jing, Y., Jiang, D., and Zhang, Q. (2014). "Photo-fermentative bio-hydrogen production from agricultural residue enzymatic hydrolyzate and the enzyme reuse," BioRes. 9(2), 2299-2310.AbstractArticlePDF

    Reducing sugars contained in agricultural residue hydrolyzates can potentially be utilized in microbial fermentations to produce biofuels and biogas. Different types of agricultural residues were employed for photo-fermentative bio-hydrogen production, and the cumulative hydrogen production data fit well to the Modified Gompertz Model. Corncob was determined to have the highest reducing sugar yield and cumulative hydrogen production (12.64 mg mL-1 enzymatic hydrolysate, 228.94 mmol L-1) and maximum hydrogen production rate (5.9677 mmol L-1 h-1). Enzyme reuse was investigated by single factor experiment design to reduce the cost of bio-hydrogen production. Taking reducing sugar yield and activity recovery efficiency as reference, substrate re-adsorption method at different temperature and time, then enzyme immobilization method at different load and pH were investigated in the process of enzymatic hydrolysis. The efficiency of enzyme utilization was enhanced via substrate re-adsorption and enzyme immobilization methods, which resulted in a 4-fold increase in recycling efficiency. The optimal enzyme reuse condition by substrate re-adsorption was a re-adsorption time of 90 min at a temperature of 15 °C, while the optimal condition by enzyme immobilization method was a pH of 4.8 and immobilized enzyme load of 400 mg.

  • Researchpp 2311-2327Budakçı, B. and Karamanoğlu, M. (2014). "Effect of Bleaching on Hardness, Gloss, and Color Change of Weathered Woods", BioRes. 9(2), 2311-2327.AbstractArticlePDF

    The aim of this study was to eliminate the problems of hardness, gloss, and color change of some wood materials exposed to weathering conditions using a bleaching procedure to attempt to return the wood material to its natural state. For this, wood samples of Scots pine (Pinus sylvestris L.), Eastern beech (Fagus orientalis L.), sessile oak (Quercus petraea L.),and chestnut (Castanea sativa Mill.) were exposed to weathering conditions based on 12 months ASTM D-1641, followed by a bleaching procedure using 18% solutions of S1 (NaOH + H2O2), S2 (NaOH + Ca(OH)2), S3 (KMnO4 + NaHSO3 + H2O2), S4 (NaSiO3 + H2O2), and the commercial product S5 (Cuprinol Decking Restorer- (H2C2O4 + C2H4(OH)2). The color, gloss, and hardness changes of samples were determined according to ASTM D 2244-2, EN ISO 2813, and ASTM D 2240 standards. As a result, hardness and gloss values of all woods decreased due to weathering conditions and the wood color turned grey due to degradation. When comparing the weathered samples to the bleached samples, the hardness value was found to be highest in pine wood bleached with the S2 solution, and the gloss value was highest in oak wood bleached with the S1 solution. The greatest color change was found in pine, beech, and chestnut samples bleached with the S4 solution and in oak samples bleached with the S1 solution.

@BioResJournal

54 years ago

Read More