NC State
BioResources
  • Researchpp 4834-4843Zhu, X., and Liu, Y. (2014). "Detection and location of defects in laminated veneer lumber by wavelet package analysis," BioRes. 9(3), 4834-4843.AbstractArticlePDF

    Large numbers of vibration signals of wood-based panels are unsteady and complicated, which means that detection can be difficult. The wavelet transform is an effective method to detect these signals, which are otherwise difficult to detect using the Fast Fourier Transform (FFT). This paper presents a study on nondestructive detection of bubble defects seen in poplar laminated veneer lumber (LVL) using a combination of modal analysis and wavelet transform. The energy spectrum of wavelet packet decomposition due to a vibration signal is investigated. The vibration nondestructive test is used to study the relationship between bubble and changes of LVL physical properties. Results show that a bubble defect leads to a variation of energy dissipation in LVL vibration, and it is mode-dependent. For relatively small bubbles, the bubble-induced changes in natural frequencies are too small to be detected by the nondestructive method. However, by analyzing the energy spectrum of wavelet packet decomposition, smaller bubbles can be detected using the nondestructive vibration signals. The position and degree of defects can be ascertained by the wavelet packet energy curvature method at the same time.

  • Researchpp 4844-4861Olarescu, C. M., Campean, M., and Olarescu, A. (2014). "Dimensional stabilization of wood originating from small-diameter trees through heat treatment," BioRes. 9(3), 4844-4861.AbstractArticlePDF

    Small-diameter wood resulting from thinning operations is an important secondary wood resource. Compared to wood originating from mature trees of the same species, it is less stable in shape and dimension when exposed to environmental humidity changes. To reduce its hygroscopicity and valorize this secondary wood resource in solid wood panels for outdoor use, wood samples cut from mature and small-diameter spruce, black pine, lime, and beech logs were heat-treated at 180 and 200 °C for 1 to 6 h in air at atmospheric pressure. Mass loss, swelling coefficients, and anti-swelling efficiency (ASE) were established for each wood type for a comparison between species. Mature and small-diameter wood was also compared under the influence of different temperature/time combinations. The heat treatment conditions that led to a mass loss of maximum 5% in each case were: 200 °C/3.5 h (mature spruce), 200 °C/5 h (thin spruce), 200 °C/3 h (mature pine), 200°C/3.7 h (thin pine), 200 °C/3.2 h (mature lime), 200 °C/2h (thin lime), 200°C/3 h (mature beech), and 200 °C/2.7 h (thin beech). Small-diameter spruce, pine, and lime (the soft species) recorded better dimensional stabilization than the mature wood of each species (ASEvol=49.7% compared to 39.3% for spruce, 38.6% compared to 38% for pine, 52.3% compared to 44.4% for lime), while small-diameter beech behaved differently (with ASEvol=43.5% compared to 48.5 for the mature wood).

  • Researchpp 4862-4872Liu, H.-T., and Cai, L. (2014). "Effect of sewage sludge addition on the completion of aerobic composting of thermally hydrolyzed kitchen biogas residue," BioRes. 9(3), 4862-4872.AbstractArticlePDF

    The composting of thermal-hydrolyzed kitchen biogas residue, either with or without sewage sludge, was compared in this study. The addition of sewage sludge increased and prolonged the temperature to a sufficient level that met the requirements for aerobic composting. Moreover, after mixing the compost materials, oxygen, ammonia, and carbon dioxide levels reverted to those typical of aerobic composting. Finally, increased dewatering, organic matter degradation, and similar mature compost production were observed. Overall, the sewage sludge exhibits a potential synergistic effect to facilitate complete aerobic composting of thermal-hydrolyzed biogas residue.

  • Researchpp 4873-4887Giacobbe, S., Pepe, O., Ventorino, V., Birolo, L., Vinciguerra, R., and Faraco, V. (2014). "Identification and characterisation of a pectinolytic enzyme from Paenibacillus xylanolyticus," BioRes. 9(3), 4873-4887.AbstractArticlePDF

    Pectinolytic enzymes play an important role in the processing of lignocellulosic materials because of their ability to improve the access of cellulases to their substrate by removing pectins. The strain Paenibacillus xylanolyticus 2-6L3 was isolated from mature compost obtained from agro-industrial wastes, and the enzyme pectate lyase from P. xylanolyticus 2-6L3, named PaenxylPel, was partially purified and subjected to structural and functional characterisation. The enzyme exhibited an optimum temperature between 60 and 70 °C and optimal pH value of 9.0 for its pectinase activity on pectin from citrus fruit. PaenxylPel showed a thermoresistance and pH resistance higher than those of other pectate lyases so far described, with half-lives of 48 and 24 h at 60 and 70 °C, respectively, a retention of around 80% of activity after 96 h at 40 and 50 °C, and a half-life of about 15 days at pH 8.0. PaenxylPel followed Michaelis-Menten kinetics toward pectin from citrus fruit, pectin from sugar beet pulp, high-ester pectin extracted from citrus peel (> 50% esterified), and polygalacturonic acid (PLA). The ability to act on both PLA and highly methylated pectins, together with a double peak in the graph of optimum pH at pH 5 and 9, suggest that pectate lyase from P. xylanolyticus shows an unusual activity, combining traits of pectate lyase and pectin lyase. This is the first manuscript on the pectinolytic activity of P. xylanolyticus.

  • Researchpp 4888-4898Sri Aprilia, N. A., Abdul Khalil, H. P. S., Bhat, A. H., Dungani, R., and Hossain, M. S. (2014). "Exploring material properties of vinyl ester biocomposites filled carbonized Jatropha seed shell," BioRes. 9(3), 4888-4898.AbstractArticlePDF

    This study investigates the influence of carbon black from carbonized Jatropha seed shell as a filler that was obtained by furnace method at 600 °C on the material properties of vinyl ester based biocomposites. The biocomposites were characterized for mechanical, thermal, and morphological properties. The tensile strength was enhanced at 10 wt.% loading of filler material as compared to the virgin polymer and higher loading percentage. Flexural strength decreased with an increase in the carbon black loading percentage, while the tensile modulus and flexural modulus showed an opposite trend. Thermogravimetric analysis showed enhancement in the residual content of the composite materials, thereby ameliorating thermal stability. Glass transition and melting temperatures by DSC analysis were observed to increase up to 10 wt % loading of filler but to decrease subsequently at higher loading percentage. The morphological analysis showed smooth morphology with intermittent lumps of agglomeration at higher loading percentages.

  • Researchpp 4899-4907Khairunnisha, I. P. N., Bakar, E. S., Nurul Azwa, A., and Choo, A. C. Y. (2014). "Effect of combination oven and microwave heating in the resin semi-curing process on the physical properties of 'Compreg' OPW," BioRes. 9(3), 4899-4907.AbstractArticlePDF

    Oil palm wood (OPW) is still difficult to utilize efficiently due to its low strength, non-durability, low dimensional stability, and poor machinability. This study was conducted to investigate semi-curing of OPW with low-molecular weight phenol formaldehyde (Lmw-PF) by a combination of oven and microwave heating. Four main processes in a modified compreg method were used, i.e. drying, impregnation, resin semi-curing heating, and hot-pressing densification. Heating type had a significant effect on the physical properties of treated OPW. The combination of the heating methods used a much shorter time compared to heating by oven only, where over 24 to 30 h were needed to dry the treated OPW.

  • Researchpp 4908-4923Riedl, B., Angel, C., Prégent, J., Blanchet, P., and Stafford, L. (2014). "Effect of wood surface modification by atmospheric-pressure plasma on waterborne coating adhesion," BioRes. 9(3), 4908-4923.AbstractArticlePDF

    In this study, the effect of an atmospheric-pressure plasma treatment on the surface properties of sugar maple (Acer saccharum March.) and black spruce (Picea mariana (Mill.) was analyzed by contact angle measurement and a water-based coating pull-off testing. The plasma gases used were Ar, N2, CO2, and air. It was found that the wettability with water and the coating adhesion of maple and spruce can be highly influenced by the nature of the plasma gas used and the plasma treatment time. For example, in the case of sugar maple, coating adhesion increased by 66% after 1.5 s of exposure to argon plasma. Repetition of the contact angle measurement one and two weeks after the initial plasma treatment showed that the plasma-induced modification is not permanent. Improvements in wettability and adhesion were also obtained with simpler, cheaper air plasmas, a result promising for the development of advanced plasma reactors operating at atmospheric pressure, specially designed for the wood industry.

  • Researchpp 4924-4933Xiao, N., Zheng, X., Song, S., and Pu, J. (2014). "Effects of complex flame retardant on the thermal decomposition of natural fiber," BioRes. 9(3), 4924-4933.AbstractArticlePDF

    Natural fiber is a renewable resource characterized by its low cost and environmental friendliness. However, flame retardant properties are one of the biggest limitations for the preparation of composite materials that need to be improved. In this work, a novel complex flame retardant consisting of aluminum hydroxide (ALH) and decabromine diphenyl oxide (PBDE) was proposed to inhibit the thermal decomposition. Flame-retarding paper was made from softwood pulp and complex flame retardant. The thermal properties of the flame retardants were studied using thermogravimetric analysis (TGA). The mechanical properties of paper treated at different temperatures were tested, while the surface characteristics of natural fiber were detected by a scanning electron microscope (SEM) and atomic force microscope (AFM); their specific surface areas were also measured. The optimum value of aluminum hydroxide to decabromine diphenyl oxide was 3 to 1, added at 70% based on dried natural fiber. It also had good flame retardant performance and mechanical properties at 200 °C for 5 min; meanwhile, the tensile index of the handsheet was 82.5 Nm/g, and the specific surface area was 0.414 m2/g.

  • Researchpp 4934-4945Wang, M., Wang, X., Li, L., and Ji, H. (2014). "Fire performance of plywood treated with ammonium polyphosphate and 4A zeolite," BioRes. 9(3), 4934-4945.AbstractArticlePDF

    Plywood samples treated with ammonium polyphosphate (APP) and 4A zeolite were prepared to investigate the effect of zeolite on wood’s burning behavior using a cone calorimeter under a heat flux of 35 kW/m2. Results showed that APP decreased the heat release rate (HRR), total heat release (THR), and mass loss rate (MLR) of treated plywood. However, APP significantly increased the total smoke release (TSR) and carbon monoxide (CO) yield. The addition of 4A zeolite reduced the HRR, peak HRR, and THR of the plywood treated with only APP. The second HRR peak in a typical plywood curve diminished with the addition of as little as 2% 4A zeolite. The average specific extinction area (ASEA) and CO yield decreased significantly with the presence of zeolite in the APP. The ignition time did not change significantly and the TSR increased when zeolite was present. Thus, a suitable amount of 4A zeolite works synergistically with APP in promoting flame retardancy in flame retardant plywood.

  • Researchpp 4946-4957Tang, C.-z., Tao, H.-x., Zhan, X.-q., and Xie, X.-a. (2014). "Mechanism of esters formation during cellulose liquefaction in sub- and supercritical ethanol," BioRes. 9(3), 4946-4957.AbstractArticlePDF

    Cornstalk cellulose was liquefied in sub- and supercritical ethanol using an autoclave at 320 °C with 160 mL of ethanol. The effects of reaction time on esters formation during cellulose liquefaction were investigated. The yield of esters was 10.0% at 30 min, increasing to 19.1% after 60 min. Ethanol favored esters formation from cellulose liquefaction. The liquid products at different reaction time were analyzed by FT-IR and GC/MS. The results showed that many free radicals were produced in sub-/super-critical ethanol interactions. Cellulose was converted to active cellulose, which was transformed into large molecular acids by dehydration, decomposition, ring-opening reactions, isomerization, and aldol condensation, and then formed ethyl esters such as ethyl lactate by esterification. In addition, ethyl esters were decomposed to acids, alcohols, and other compounds with increasing reaction time in the presence of ethanol free radicals. Using these results, a reaction network for the formation of ethyl esters from cellulose in sub- and supercritical ethanol was proposed.

@BioResJournal

54 years ago

Read More