NC State
BioResources
  • Researchpp 3720-3727Sohi, A., Avramidis, S., and Mansfield, S. (2017). "Near-infrared spectroscopic separation of green chain sub-alpine fir lumber from a spruce-pine-fir mix," BioRes. 12(2), 3720-3727.AbstractArticlePDF
    The intention of this exploratory study was to determine whether near-infrared spectroscopy, combined with multivariate statistical modeling, could become a swift and accurate tool for identifying sub-alpine fir within a typical spruce-pine-fir (SPF) lumber mix in the green chain of a sawmill. This need arises from the difficulty encountered in the drying sub-alpine fir. Its identification and removal from the SPF mix before kiln drying may be quite beneficial for producing high quality lumber. Near-infrared spectra were obtained from scanning of small specimens that were prepared from freshly cut trees. The results of the initial principal component analysis indicated that all four components could be used for species differentiation with the help of partial least squares discriminant analysis. All specimens in the training set were fitted into the correct sub-group of either fir or spruce-pine groups. The test set was validated and it revealed that all specimens were correctly classified. The outcome also confirmed that near-infrared spectroscopy combined with multivariate statistical modeling could be a suitable prediction model for separation of sub-alpine fir from the SPF mix.
  • Researchpp 3728-3743Crespo, J., Aira, J. R., Vázquez, C., and Guaita, M. (2017). "Comparative analysis of the elastic constants measured via conventional, ultrasound, and 3-D digital image correlation methods in Eucalyptus globulus," BioRes. 12(2), 3728-3743.AbstractArticlePDF
    The design of engineering high value-added products and timber structures analysis requires reliable elastic characteristics related to a theoretical model that describes the elastic behavior of wood material. The present research focuses on determining the elastic constants of Eucalyptus globulus Labill., which allow their implementation as input parameters in any numerical model. The great potential of this species for novel structural applications was considered due to its superior mechanical properties. Two different testing methods were applied to the same specimens to directly compare the results. These two tests were conventional mechanical compression and a non-destructive ultrasound procedure. In addition, two different strain measurement techniques were contrasted in the performance of the mechanical tests, namely the conventional strain gauges that give local measurements, and the 3-D full-field optical system based on the principles of digital image correlation. The elastic values obtained via ultrasound are higher than those coming from mechanical testing using conventional gauges. Conventional gauges lead to underestimated values in comparison to the results from full-field strain measurements. Eucalyptus globulus shows greater longitudinal and transversal stiffness than the average values for other hardwoods, which verifies the good structural possibilities of this species.
  • Researchpp 3744-3750Wiwart, M., Bytner, M., Graban, L., Lajszner, W., and Suchowilska, E. (2017). "Spelt (Triticum spelta) and emmer (T. dicoccon) chaff used as a renewable source of energy," BioRes. 12(2), 3744-3750.AbstractArticlePDF
    The energy values of spelt (Triticum spelta) and emmer (T. dicoccon) chaff were determined and compared to wheat and barley straw. The thermophysical parameters (moisture content, lower calorific value, gross calorific value, content of fixed carbon, volatile matter, and ash) and elemental composition (content of C, H, S, N, and O) of spelt and emmer chaff were determined. Spelt and emmer chaff were characterized by higher gross calorific value (18.75 GJ/Mg vs. 18.31 GJ/Mg), higher lower calorific value (16.74 GJ/Mg vs. 16.35 GJ/Mg), noticeably lower ash content (3.79% vs. 6.16%) and lower content of volatile matter (70.3% vs. 74.9%) than wheat and barley straw. Emmer chaff contained noticeably more sulfur (0.148%), nitrogen (2.20%) and hydrogen (7.50%) than both types of straw (0.064%, 0.66% and 5.55% on average, respectively) and spelt chaff (0.071%, 0.80%, and 7.06%, respectively). Despite the fact that the relatively high sulfur content in emmer chaff is not desirable, the results of this study indicate that the chaff of hulled wheat had considerable energy potential and that hulled wheats could be effectively used as renewable sources of energy in the region of their production.
  • Researchpp 3751-3765Sanyang, M. I., Muniandy, Y., Sapuan, S. M., and Sahari, J. (2017). "Tea tree (Melaleuca alternifolia) fiber as novel reinforcement material for sugar palm biopolymer based composite films," BioRes. 12(2), 3751-3765.AbstractArticlePDF
    The tea tree (Melaleuca alternifolia) is well known for producing essential oil, which is used in medicinal and cosmetic products as a preservative, antiseptic, antibacterial, antifungal, and anti-pest additive. In this study, tea tree residues generated as agro-waste after the tea tree oil extraction process were utilized as cheap fiber material for the reinforcement of sugar palm starch (SPS)-based composite films. The crystallinity and functional groups of tea tree fiber (TTF) were investigated and the effect of TTF loading (0, 1, 3, 5, and 10 wt.%) on the tensile and morphological properties of TTF/SPS composite films were investigated. As the TTF loading increased from 0 to 10 wt.%, the tensile strength and modulus of TTF/SPS composite films were significantly increased, but their elongation at break declined. Optical microscopic and scanning electron microscopic images revealed that the TTF was randomly dispersed in all samples, and there was optimal compatibility between the fiber and matrix. Based on these findings, TTF can be considered as a potential reinforcement material for polymer composite films.
  • Researchpp 3766-3777Wu, H., Chen, F., Liu, M., and Wang, J. (2017). "Preparation of microcrystalline cellulose by liquefaction of Eucalyptus sawdust in ethylene glycol catalyzed by acidic ionic liquid," BioRes. 12(2), 3766-3777.AbstractArticlePDF

    Microcrystalline cellulose (MCC) was prepared from the residue of the incomplete liquefaction of eucalyptus sawdust; atmospheric liquefaction was carried out using ethylene glycol as the solvent and 1-(4-sulfobutyl)-3-methylimidazolium hydrosulfate as the catalyst. The highest cellulose content in the residue reached 93.9%. The MCC prepared from liquefaction was characterized by various techniques, which included infrared spectroscopy, X-ray diffraction, thermo-gravimetric analysis, and scanning electron microscopy. The results were compared to those of a commercial MCC (cotton linters). The analyses indicated that hemicelluloses and lignin were removed extensively from the MCC produced from the sawdust. The MCC was a cellulose I polymorph with 79.0% crystallinity. The particles were shaped as elongated rods and had good thermal stability. The particle sizes of the produced MCC ranged from 1 µm to 100 µm with a mean of 38.6 µm.

  • Researchpp 3778-3789Park, H. J., Wen, M. Y., Kang, C. W., and Sun, Y. X. (2017). "Development of physical pretreatment method for wood fire retardant impregnation," BioRes. 12(2), 3778-3789.AbstractArticlePDF

    To achieve a deeper and more uniform impregnation of water-soluble phosphorous-based fire retardants (WPFRs), in this work several physical pretreatment methods were developed including kerfing, boring, and the combination of both for structural square-wood posts in wooden buildings. Research was performed on three wood species, sugi (Cryptomeria japonica), larch (Larix olgensis), and Douglas fir (Pseudotsuga menziesii Franco), which are generally recognized as refractory wood species. The effects of pretreatment method on chemical uptake, chemical penetration, and mechanical properties were evaluated. The methods were compared with the incising method, a traditional method used for wood preservation. The results indicated that the pretreatments effectively increased the chemical uptake and penetration, especially in larch wood. Although the traditional incising method also increased the chemical uptake, it decreased the modulus of rupture (MOR) and compressive strength. The boring and combined method with a boring diameter less than 12 mm are recommended for WPFR wood impregnation.

  • Researchpp 3790-3800Wu, Z., Huang, D., Wang, W., Chen, T., Lin, M., Xie, Y., Niu, M., and Wang, X. (2017). "Optimization for fire performance of ultra-low density fiberboards using response surface methodology," BioRes. 12(2), 3790-3800.AbstractArticlePDF

    The optimization of the process conditions for fire retardant ultra-low density fiberboards (ULDFs) was investigated using response surface methodology (RSM). Three parameters, namely those of Borax-Zinc-Silicate-Aluminum (B-Zn-Si-Al), chlorinated paraffin (CP), and chloride-vinyl chloride emulsions (PVDC) were chosen as variables. The considerably high R2 value (99.98%) indicated the statistical significance of the model. The optimal process conditions for the limiting oxygen index (LOI) were determined by analyzing the response surface’s three-dimensional surface plot and contour plot, and by solving the regression model equation with Design Expert software. The Box-Behnken design (BBD) was used to optimize the process conditions, which showed that the most favorable dosages of B-Zn-Si-Al, CP, and PVDC were 800 mL, 46.47 mL, and 35.64 g, respectively. Under the optimized conditions, the maximum LOI was 48.4.

  • Researchpp 3801-3815Jiang, X., Zhao, T., Shi, Y., Wang, J., Li, J., and Yang, H. (2017). "H2SO4 and NaOH pretreatment to enhance bio-oil yield of pine wood liquefaction in methanol," BioRes. 12(2), 3801-3815.AbstractArticlePDF

    Pine wood was pretreated with H2SO4 and NaOH, followed by liquefaction in methanol at temperatures ranging from 200 to 350 °C, to produce bio-oil. Composition analysis and scanning electron microscopy (SEM) observation were performed to study the impact of the pretreatment on the pine wood structure. The SEM images showed that the structures of the samples were destroyed by pretreatment. After being pretreated by H2SO4, the size of holes generated was smaller than that with pretreatment by NaOH. Furthermore, the influences of the temperature, methanol content, and residence time on the yield of the water-soluble fraction (WS), ether-soluble fraction (ES), and bio-oil were determined. Shorter residence time and higher amounts of methanol favored the products of WS, ES, and bio-oil. Gas chromatography-mass spectrometry (GC-MS) analysis showed that phenols, ketones, aromatics, and aldehydes are the main components of bio-oil.

  • Researchpp 3816-3833Chowdhury, Z. Z., Pal, K., Johan, R. B., Yehya, W. A., Yehya Dabdawb, W. A., Ali, M. E., and Rafique, R. F. (2017). "Comparative evaluation of physiochemical properties of a solid fuel derived from Adansonia digitata trunk using torrefaction," BioRes. 12(2), 3816-3833.AbstractArticlePDF

    The effect of temperature on the physiochemical characteristics of a solid fuel or biocoal derived from the dried trunk of Adansonia digitata (Baobab) was studied using torrefaction processes. The chemical composition of the solid fuel or char obtained by wet (HTC) and dry torrefaction processes were determined by elemental and thermogravimetric (TGA) analyses. The Brunauer-Emmett-Teller (BET) surface area analyzer measured the porous texture and surface area of the prepared samples. The changes in the surface morphology and crystallinity of the prepared samples were evaluated by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The torrefaction process successfully improved the energy content from 16.8 MJ/kg to 22.0 MJ/kg, which was evidently higher than the starting precursors. The maximum energy yield obtained was 90.0% using dry torrefaction at 250 °C. The energy densification ratio was also higher for the char produced by the dry torrefaction process. However, the char produced by the HTC process at 250 °C showed the highest surface area. The pore diameter was higher for HTC-char produced at the same temperature. Overall the results revealed that the torrefaction of lignocellulosic biomass is beneficial for upgrading the fuel quality and energy densification of char residues.

  • Researchpp 3834-3849Jaber, S. M., Md Shah, U. K., Mohamed Asa’ari, A. Z., Ariff, A. B. (2017). "Optimization of laccase production by locally isolated Trichoderma muroiana IS1037 using rubber wood dust as substrate," BioRes. 12(2), 3834-3849.AbstractArticlePDF
    Laccases have great biotechnological potential in various industries as they catalyze the oxidation of a broad variety of chemical compounds, diamines, and aromatic amines. The production of laccases by fungi has been broadly studied due to their secretion of enzymes and their growth using cheap substrates. In this study, five native fungi isolates (Dr1, Dr2, Dr4, K5, and K9) were screened for laccase enzyme production. The ability to produce laccase was evaluated based on light green to dark color formation on a potato dextrose agar using 2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) as an indicator. The highest laccase production was obtained by Dr4, which was identified as Trichoderma muroiana IS1037. Among the different carbon sources tested (rubber wood dust, rice straw, sugar cane bagasse, and oil palm empty fruit bunch), the highest laccase activity (5.84 U/mL) was obtained in submerged fermentation using rubber wood dust as substrate. Laccase production was further enhanced with the addition of 2 mM copper sulfate. In conclusion, the local fungus isolate Trichoderma muroiana IS1037 is a potential fungi-producing laccase that can use rubberwood dust as carbon source.

@BioResJournal

55 years ago

Read More