NC State
BioResources
  • Researchpp 6750-6757Fraga, I. F., Moraes, M. H. M., Menezes, I. S., Arroyo, F. N., Almeida, J. P. B., Rodrigues, E. F. C., Mascarenhas, F. R., Aquino, V. B. M., Silva, S. A. M., Lahr, F. A. R., Júnior, W. M. P., and Christoforo, A. L. (2021). "Influence of roof slope on timber consumption in plane trusses design," BioResources 16(4), 6750-6757.AbstractArticlePDF

    The growing world consumption of wood in civil construction is evident, especially in structural roofing systems. Despite being from a renewable source, its rational and intelligent use is of vital importance in the execution of structural designs. Because it is a system that is recognized worldwide in the design of trussing roof structures, there are several empirical assumptions for structural calculation. To reduce timber consumption, some tile manufacturers suggest a 10% (6°) slope between chords. However, after simulations of 11 slopes with angles from 5° to 15°, the timber consumption was inversely proportional to the slope, reaching a 90% difference between extreme angles. The method used to obtain the results was software designed according to the routines prescribed by the new draft standard of ABNT NBR 7190 (2021). Considering a prefabricated truss with 5 cm thickness sections, the design criterion was that of minimum height, increasing by 0.10 cm until all checks were satisfied. Finally, the minimum angle after which no strengthening is required on the bars was 10°.

  • Researchpp 6758-6765Soares, L., Fraga, I., Paula, L., Arroyo, F., Ruthes, H., Aquino, V., Molina, J., Panzera, T., Branco, L., Chahud, E., Christoforo, A., and Lahr, F. (2021). "Influence of moisture content on physical and mechanical properties of Cedrelinga catenaeformis wood," BioResources 16(4), 6758-6765.AbstractArticlePDF

    This study aimed to investigate the influence of moisture content variation on 12 mechanical properties of the Cedrelinga catenaeformis species. Of the 12 properties, four were significantly affected (based on analysis of variance at 5% significance level), and the compression and shear strengths in the direction parallel to the fibers exhibited the greatest difference in values from the saturated moisture condition of up to 12% (approximately 34% increase). Toughness exhibited a behavior different from that predicted by the normative equation, in which increase in moisture content implied increase (approximately 59%) of the property studied. Because a good part of the properties was not significantly affected and Brazilian standard ABNT NBR 7190 (1997) considers expressions that lead to a considerable increase in mechanical properties with the reduction of moisture content, this approach was unfavorable to the safety of the project, motivating the development of other studies to collaborate in revisions of this normative document.

  • Researchpp 6766-6780Wang, B., Yang, C., Ding, Y., and Qin, G. (2021). "Detection of wood surface defects based on improved YOLOv3 algorithm," BioResources 16(4), 6766-6780.AbstractArticlePDF

    For the detection of wood surface defects, a convolutional neural network has a low detection efficiency and insufficient generalization ability, so it does not meet the requirements of online detection. Aiming to solve the above problems, the YOLOv3 baseline model, which has the advantage of multi-objective dynamic detection, was improved and applied to the online detection of wood surface defects. To solve the problem of the poor generalization ability of the network, GridMask was used to enhance the data and improve the robustness of the network. In order to solve the problem of the considerable amount of network parameter calculations and insufficient real-time performance, the residual block of the backbone network was changed to a Ghost block structure to achieve a lightweight model. Finally, the confidence loss function of the network was improved to reduce the influence of simple samples and negative samples on model convergence. The experimental results showed that, compared with the original network, the improved algorithm increased the mean average precision by 5.73% and the detection speed was increased to 28 frames per second (an increase of 11), which met the requirements for real-time industrial detection.

  • Researchpp 6781-6790Elbidi, M., Hewas, A., Asar, R., and Mohd Salleh, M. A. (2021). "Comparative study between activated carbon and biochar for phenol removal from aqueous solution," BioResources 16(4), 6781-6790.AbstractArticlePDF

    Removal of phenol from wastewater using local biochar (BC) was investigated, while using activated carbon (AC) as a reference material. The main parameters affecting the sorption process were initial concentration, contact time, pH, and temperature. Statistical analysis of the results showed that the maximum removal percent when using AC and BC were 95% and 55%, respectively. Experimental data showed that the removal of phenol has fast kinetics and reached equilibrium within 5 minutes. The Langmuir and Freundlich isotherm models were applied to fit the adsorption experimental data. Pseudo-first order and pseudo-second order kinetic models were employed.

  • Researchpp 6791-6798Cavus, V. (2021). "Weathering performance of mulberry wood with UV varnish applied and its mechanical properties," BioResources 16(4), 6791-6798.AbstractArticlePDF

    Mulberry wood is used in carpentry, fences, turnery, and garden architecture. In this study, various mechanical properties (modulus of rupture, modulus of elasticity, Janka hardness, and screw holding resistance) of mulberry (Morus alba) wood and its weathering performance after applying 3- and 5-layer UV system parquet varnishes with different surface applications were investigated. The varnished materials were aged using UV lamps for 252 h and 504 h, and the aged specimens were compared with non-aged specimens. The results of the variance analyses found that all tests were significant. According to the results, it was found that while the yellow color (b*) tone value, lightness, and glossiness (perpendicular (⊥) and parallel (║) direction at 20°, 60°, and 85° angles) values decreased for both varnish applications, the pendulum hardness value increased. The adhesion strength (pull-off) test (MPa) to the surface first decreased and then increased.

  • Researchpp 6799-6813Wei, X., Xu, S., Sun, L., Tian, C., and Du, C. (2021). "Propagation velocity model and two-dimensional defect imaging of stress wave in larch (Larix gmelinii) wood," BioResources 16(4), 6799-6813.AbstractArticlePDF

    The propagation law of stress wave in larch (Larix gmelinii) wood was studied in this work. External factors affecting the propagation velocity of stress wave in wood cross-section were studied using the orthogonal experiment method. The most influential factors were shown by the experimental results, and the parameters of the propagation velocity model of stress wave in larch wood were optimized. Based on the optimized propagation velocity model, combined with the traditional defect determination method, a twelve-directional stack imaging (TDSI) steps system was developed for larch wood internal defect detection. The analysis results showed that of the three external factors of temperature, moisture content, and illumination duration, temperature had the greatest influence on the propagation velocity model of stress wave in larch wood cross-section. Using TDSI to image the defective larch wood not only can locate the defective area, but also it can achieve a high imaging precision of 95.52%, and the imaging precision is unrelated to the location of the defect, which has a good quantitative defect detection effect.

  • Researchpp 6814-6830Zhang, X., Li, L., Tian, J., Li, N., Zuo, L., Yan, L., He, J., and Du, X. (2021). "H2O2 bleaching of brown pulp with adsorbed xylan and its modifying effects on the mechanical properties of paper," BioResources 16(4), 6814-6830.AbstractArticlePDF

    Xylan is the primary hemicellulose in most hardwood species, especially in birch. Research has highlighted the exploitation of xylans as a strength-enhancing additive to paper due to the current trend for the effective utilization of biomass. In this paper, a new pulping process was proposed, which involved the extraction of xylan prior to pulping, followed by the re-adsorption of the pulp after the final stage in the digester, followed by a suitable bleaching process. The aim of this work was to bleach hardwood kraft pulp (brown pulp) with adsorbed birch xylan via hydrogen peroxide and study the effect of the bleaching parameters on the paper properties. The results showed that the optical properties of paper decreased; however, the mechanical properties increased after the brown pulp adsorbed birch xylan. During the bleaching process, better mechanical properties were obtained with shorter bleaching times and lower bleaching temperatures, initial pHs, and MgSO4 dosages. However, the optical properties were improved as the bleaching time, temperature, initial pH, and MgSO4 dosage were increased. The adsorption of birch xylan could effectively modify the mechanical properties of paper made from brown pulp under various phases.

  • Researchpp 6831-6849Liu, S., Hu, C., and Lu, K. (2021). "Manufacture of Mikania micrantha vinegar and investigation of its repellent activity for Forcipomyia taiwana," BioResources 16(4), 6831-6849.AbstractArticlePDF

    Crude vinegar was prepared from Mikania micrantha plants using a steel kiln. The ether-extracted vinegar and acidic, phenolic, and neutral fractions were obtained by the partition method. The fundamental properties of crude vinegar, including its fractions applied to repel biting midges (Forcipomyia taiwana), were investigated. Results indicated that the crude vinegar had a moisture content of 91%, Gardner color value of 11.2, a reddish-brown color, specific gravity of 1.0164, pH of 5.36, organic acid content of 2.50%, and soluble tar content of 0.78%. In ether-extracted vinegar of M. micrantha, the acidic component was the major ingredient, followed by the neutral, phenolic, and nitrogenous components. The main organic compounds of the acidic, phenolic, nitrogenous, and neutral components were acetic acid, phenol, 3-pyridinol, and 2-furanmethanol, respectively. The results also demonstrated that the crude vinegar, ether-extracted vinegar, and the phenolic and neutral fractions effectively repelled biting midges, with absolute repellent times of 49, 87, 83, and 99 min, respectively. The repellent activity of ether-extracted vinegar and the phenolic and neutral fractions of M. micrantha vinegar on biting midges was higher than that of a commercial repellent agent (named Dinling) with absolute repellent time of 61 min.

  • Researchpp 6850-6869Kazeem, M., Ajijolakewu, K., and Abdul Rahman, N. (2021). "Cellulase production by co-culture of Bacillus licheniformis and B. paralicheniformis over monocultures on microcrystalline cellulose and chicken manure-supplemented rice bran media," BioResources 16(4), 6850-6869.AbstractArticlePDF

    Single cultures and co-cultures of Bacillus licheniformis and Bacillus paralicheniformis isolated from compost were evaluated for their carboxymethyl cellulase (CMCase) and filter paperase (FPase) production potential. Using a medium supplemented with microcrystalline cellulose (MCC), in the co-culture, CMCase and FPase activities increased 8.87- and 2.28-fold and 10.15- and 3.20-fold over B. licheniformis and B. paralicheniformis monocultures, respectively. The synergistic behavior of the two isolates might be due to the consumption of hydrolysis product (glucose, cellobiose) by one or both of the isolates, which improved their metabolic performance for cellulase secretion. Optimal conditions for cellulase production by this co-culture were a temperature of 45 °C, and pH 7 at 180 rpm in a medium containing rice bran at 1% (w/v) and chicken manure as nitrogen supplement at 2% (w/v). The maximum CMCase and FPase produced under the above conditions were 79.8 U/mL and 12.5 U/mL, respectively. This corresponds to 257.4- and 59.5-fold enhancement in CMCase and FPase activity, respectively, over B. licheniformis monoculture, and 306.9- and 83.3-fold increase with respect to the B. paralicheniformis monoculture. These results indicate that improved cellulase production can be achieved through co-culture and chicken manure nitrogen-supplement.

  • Researchpp 6870-6890Wang, H., Wu, J., and Chen, Z. (2021). "Carbon footprint accounting and low-carbon path optimization for imported timber-based wooden furniture supply chains," BioResources 16(4), 6870-6890.AbstractArticlePDF

    Using an imported timber-based solid wood box bed (2000 mm × 1800 mm) as the functional unit, the ILCD 2011 midpoint assessment method was used to measure the life cycle carbon emissions of the product. Using this assessment, the Dijkstra algorithm was adopted to determine the shortest supply chain path and to obtain the minimum carbon footprint of the supply chain. Results showed that the total carbon footprint of the wood bed was 464 kg for the control case. For experimental cases, the carbon footprint ranged from 456 kg to 517 kg CO2-eq. The upstream process was identified as the primary contributor to the carbon footprint, accounting for 74.6% to 80.7% of the total carbon footprint, followed by the downstream and the core-stream processes. Configuration of a timber harvesting system with lower fuel consumption, purchasing timber from areas within shorter transportation distance, and reducing the proportion of incineration for waste treatment were feasible solutions to reduce the carbon footprint of the product. A case study optimizing the low-carbon path for the wooden furniture supply chain determined the shortest path for the participants in each link, such that the minimum total carbon footprint of the supply chain was 463 kg CO2-eq.

@BioResJournal

54 years ago

Read More