Volume 11 Issue 4
Latest articles
- Researchpp 9325-9339Razali, N., Sapuan, S. M., Jawaid, M., Ishak, M. R., and Lazim, Y. (2016). "Mechanical and thermal properties of roselle fibre reinforced vinyl ester composites," BioRes. 11(4), 9325-9339.AbstractArticlePDFRoselle (Hibiscus sabdariffa L.) bast fibre reinforced vinyl ester (VE) was prepared using a hand lay-up method and an internal mixer. The composite samples were prepared under two different parameters: with various fibre contents; and without fibre (neat VE). The mechanical properties (tensile and impact strength) and thermal properties were investigated. The morphological properties of impact fracture samples were studied using a scanning electron microscope (SEM). Roselle fibre reinforced VE (RFVE) composites showed increased tensile strength and tensile modulus. The highest tensile strength and modulus were at 20vt% fibre loading. However, impact strength decreased as the fibre loading increased. SEM showed that there was good fibre/matrix adhesion and fibre dispersion for 20% fibre loading, which was reflected in the good tensile strength properties. However, fibre agglomeration was seen at higher fibre loads. The results from thermogravimetric analysis (TGA) and derivative thermogravimetric analysis (DTG) showed three major degradations of the RFVE, which were the loss of moisture content, degradation of hemicelluloses, and degradation of cellulose. The thermal analysis showed enhancements in the residual content of the composite materials, thereby improving the thermal stability. However, there was no major difference seen in the degradation temperature.
- Researchpp 9340-9349Marques, A. F. S., Martins, C. E. J., Dias, A. M. P. G., Costa, R. J. T., and Morgado, T. F. M. (2016). "Assessment of reuse potential of maritime pine utility poles for structural applications after removal from service," BioRes. 11(4), 9340-9349.AbstractArticlePDF
There has been a strong recent effort to develop procedures that prevent the unnecessary replacement of timber utility poles. Even when assessments show that the utility pole needs to be replaced, there are many cases in which the removed utility poles can be reused. The aim of this study was to determine the mechanical properties of Maritime Pine (Pinus pinaster (Ait.)) utility poles removed from service (UPRFS) in order to assess their ability to be reused in structural applications. A sample of 51 UPRFS in Portugal was selected, and visual and mechanical properties were evaluated through non-destructive and destructive tests. Dynamic modulus of elasticity (MOEdyn) was correlated with bending strength (MOR) (r = 0.43) and modulus of elasticity (MOE) (r = 0.71). UPRFS showed a decrease of 14% and 6% in the mean values of MOR and MOE, respectively, when compared with new utility poles. A high variability and low values were obtained for MOR. These results highlight the reuse potential of the maritime pine utility poles for structural applications. Furthermore, the determined properties of UPRFS could be improved with a more stringent selection process that discards utility poles showing severe damage or by removing damaged areas in the utility poles.
- Researchpp 9350-9358Villasante, A., Laina, R., and Vignote, S. (2016). "Effect of vacuum and pressure treatments on the mechanical properties and moisture balance of wood from Pinus sylvestris," BioRes. 11(4), 9350-9358.AbstractArticlePDF
Several works have analyzed the alteration in the mechanical strength of wood after the application of protective substances. However, it remains unclear whether the significant differences obtained are caused by the protective substances, the pressure and vacuum conditions used in the treatment, or the simultaneous effect of both. In this study, 123 wood samples from Pinus sylvestris were tested for bending, and 85 samples were tested for compression strength parallel to the grain. These samples were randomly distributed in three groups (treated with water pressure, water vacuum, and control samples simply submerged in water). The results indicated that there was no difference in mechanical properties between the treated and untreated samples. In contrast, significant differences were detected in equilibrium moisture after a prolonged drying process.
- Researchpp 9359-9372Kasal, A., Kuşkun, T., Haviarova, E., and Erdil, Y. Z. (2016). "Static front to back loading capacity of wood chairs and relationship between chair strength and individual joint strength," BioRes. 11(4), 9359-9372.AbstractArticlePDFThe relationship between the static front to back loading capacity of chairs and the moment capacities of the joints used in their side frames was investigated. The secondary purpose of the study was to determine the effect of tenon sizes on front to back loading capacity of chairs. The moment capacities of round edge mortise and tenon L-shaped and T-shaped joints constructed of Turkish beech (Fagus orientalis L.) with cross sections and tenon sizes identical to those used in the chairs were first determined. Tenons varied from 30, 40, and 50 mm in width and 30, 40, and 50 mm in length. Joints were assembled with 65% solid polyvinylacetate (PVAc) adhesives. Front to back loading tests were then performed on the chairs according to the method adopted by the American Library Association (ALA). The results indicated that front to back loading capacity increases as either tenon width or length increases. Highest joint moment capacities were obtained when L-shaped joints were constructed with 50 mm wide by 50 mm long tenons and T-shaped joints were constructed with 40 mm wide by 50 mm long tenons. Finally, the strength of chairs could be reasonably predicted from the strength of joints.
- Researchpp 9373-9385Zeidler, A., and Borůvka, V. (2016). "Wood density of northern red oak and pedunculate oak grown in former brown coal mine in the Czech Republic," BioRes. 11(4), 9373-9385.AbstractArticlePDF
This study deals with the characteristics of wood of two different species of oaks, the non-native northern red oak (Quercus rubra L.) and the native pedunculate oak (Quercus robur L.), growing in a reclaimed surface brown coal mine in the Czech Republic. The differences in the wood density of the aforementioned species, including the impact of position in the trunk, were examined. The impact of annual ring width and the proportion of latewood on density were also evaluated. The density of Q. robur wood reached 707 kg·m-3, which was significantly higher than that of the North American species, which reached 654 kg·m-3. Moreover, in the radial direction, the density increased in the direction from the pith toward the bark for both Q. rubra, and Q. robur. In the vertical direction, the density reached its highest value at the basal part of the trunk, but statistically, this assertion was only significant for Q. rubra. The effects of annual ring width and the proportion of latewood on density were shown to be statistically very low for both oak species.
- Researchpp 9386-9399Olenska, S., Smardzewski, J., and Beer, P. (2016). "The stiffness of one-sided, asymmetrically veneered composites," BioRes. 11(4), 9386-9399.AbstractArticlePDF
The goal of the study was to analyse of the stiffness of one-sided, asymmetrical veneered boards by investigating the influence of glue type and board thickness on deflection and stress distribution on each composite layer. A specially designed stand that measured the whole area of the board was used to empirically measure the asymmetrically veneered elements. The theoretical measurements were taken using the Finite Elements Method in the Autodesk Mechanical Simulation 2015® program. All elements of composites including veneer (beech), glue-line (polyisocyanate and poly (vinyl acetate)), and the wood-based panel were simulated as elastic materials.
- Researchpp 9400-9420Liu, X. Y., Timar, M. C., Varodi, A. M., and Yi, S. L. (2016). "Effects of ageing on the color and surface chemistry of Paulownia wood (P. elongata) from fast growing crops," BioRes. 11(4), 9400-9420.AbstractArticlePDF
The behavior of paulownia wood (Paulownia elongata) was investigated using three different ageing tests: simulated natural ageing under the influence of light under indoor conditions, temperature-induced ageing in the dark, and UV-induced ageing. Ageing effects were evaluated by color measurements in the CIE Lab system. Simulated natural ageing of wood in indoor conditions (6 months) and UV-accelerated ageing (72 h) are complex and dynamic processes, which resulted mostly in yellowing of the samples due to photo-degradation. Temperature-induced ageing (288 h at 100 C) resulted mostly in a rapid and visible darkening of the paulownia wood. Comparative in-time evolution of color changes during accelerated UV ageing testing and simulated natural ageing testing under indoor conditions allowed the estimation of an acceleration index of about 50X. Fourier transform infrared spectroscopy (FTIR) was used to examine specific chemistry changes occurring during these ageing tests. UV light from natural or artificial sources caused primarily lignin degradation followed by oxidative processes leading to carbonyl-containing chromophores. Temperature-induced partial degradation of hemicelluloses and oxidative processes resulted in the formation of chromophores containing mostly conjugated carbonyl groups. This research highlighted that paulownia wood (P. elongata) is quite sensitive to ageing under the action of light and temperature, which cause notable color and surface chemistry changes.
- Researchpp 9421-9437Salem, M. Z. M., Elansary, H. O., Elkelish, A. A., Zeidler, A., Ali, H. M., Mervat, E. H., and Yessoufou, K. (2016). "In vitro bioactivity and antimicrobial activity of Picea abies and Larix decidua wood and bark extracts," BioRes. 11(4), 9421-9437.AbstractArticlePDFPicea abies and Larix decidua were subjected to GC/MS analyses, and antimicrobial (fungi and bacteria) assays of their stem wood and bark extracts were investigated. L. decidua bark extract exhibited the highest antifungal and antibacterial activities against the microorganisms that were screened. The microbes Penecillium ochrochloron and Aspergillus ochraceus were the most sensitive to the extracts, whereas Candida albicans was the most resistant fungus. L. decidua wood and bark did not exhibit much variation in their antibacterial activities, except against Micrococcus flavus and Pseudomonas aeruginosa. The bacterium most sensitive to the extracts was Escherichia coli, whereas the most resistant was M. flavus. 13-epimanool and α-cedrol were the main components of P. abies wood extract. The main components in its bark were abietic acid, astringin, dehydroabietic acid, and α-terpineol. The main chemical compounds in L. decidua wood extract were abietic acid, oleanolic acid, duvatrienediol, and larixol. The main chemical compounds in its bark were (-)-2,9-dihydroxyverrucosane and larixol. The study revealed that P. abies and L. decidua stem wood and bark extracts contain several compounds that have antimicrobial activities towards diverse human pathogenic, food, and agricultural microbes. These results might guide in future searches for novel natural products with chemotherapeutic uses.
- Researchpp 9438-9454Mohammed, A. A., Bachtiar, D., Siregar, J. P., Rejab, M. R. M., and Hasany, S. F. (2016). "Physicochemical study of eco-friendly sugar palm fiber thermoplastic polyurethane composites," BioRes. 11(4), 9438-9454.AbstractArticlePDFThe physicochemical properties of an innovative and environmentally friendly composite material based on sugar palm fiber (SPF) and thermoplastic polyurethane (TPU) were examined. The base material with short fibers was extruded and hot pressed to produce the TPU-SPF composites with different synthetic parameters. Operating parameters including temperature for extrusion (170 to 190 °C), rotational velocity (30 to 50 rpm), and fiber particle sizes (160, 250, and 425 µm) were investigated. The aims were to optimize rotational velocity, temperature, and fiber size of the TPU-SPF composites. Firstly, the influence of rotation of velocity and temperature on the tensile properties was investigated. Secondly, effects of different fiber sizes on tensile, flexural properties, and impact strength as per ASTM standards were tested. The morphological, thermal, and physicochemical properties of the synthesized TPU-SPF composites were ascertained with Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The optimal results were observed with a temperature of 190°C and a rotational velocity of 40 rpm. Meanwhile, the strength and modulus for tensile and flexural were best for fiber size 250 µm. Moreover, the impact strength reached a peaking trend at 250 µm fiber size.
- Researchpp 9455-9466Feng, Y., Lei, B., Liang, Y., Zhong, H., Yin, X., Qu, J., and He, H. (2016). "Changes in the microstructure and components of Eulaliopsis binata treated by continuous screw extrusion steam explosion," BioRes. 11(4), 9455-9466.AbstractArticlePDF
Eulaliopsis binata (EB) was pretreated by continuous screw extrusion steam explosion (SESE), with the aim of converting EB into useful materials on an industrial scale. The three main chemical components were characterized by component analysis using the Van Soest fiber detergent system, ultraviolet (UV) absorption spectrophotometry, gel permeation chromatography (GPC), and carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy. Changes in the contents of detergent soluble species in the Van Soest process revealed the partial degradation of hemicellulose and cellulose, and the partial removal of lignin. GPC indicated that the molecular weight of lignin decreased from 4194 to 3710 g/mol over the first three SESE pretreatment cycles, but then increased to 4592 g/mol following the fourth SESE pretreatment cycle. UV absorption and 13C-NMR results indicated the partial removal of lignin and the depolymerization and repolymerization of lignin during SESE pretreatment. Scanning electron microscopy (SEM) showed that the epidermis and parenchyma of EB were almost completely desquamated. X-ray diffraction (XRD) revealed that the crystallinity of EB initially increased and then subsequently decreased slightly, with increasing number of SESE pretreatment cycles. The varying physicochemical properties of EB resulting from different numbers of pretreatment cycles may find use in more diverse applications.