NC State
BioResources
  • Researchpp 1382-1394Ghaje Beigloo, J., Eslam, H. K., Hemmasi, A. H., Bazyar, B., and Ghasemi, I. (2017). "Effect of nanographene on physical, mechanical, and thermal properties and morphology of nanocomposite made of recycled high density polyethylene and wood flour," BioRes. 12(1), 1382-1394.AbstractArticlePDF
    The effects of the amount of nanographene on physical, mechanical, and thermal properties and morphology of the wood-plastic composites were investigated. This wood-plastic was made using recycled high density polyethylene (HDPE), nanographene, and wood flour. Four weight levels, 0, 0.5, 1.5, or 2.5 wt.% of nanographene, were combined with 70% polymeric matrix and 30% lignocellulosic material with an internal mixer. The results showed that by increasing the amount of nanographene up to 0.5% by weight, the flexural strength, flexural modulus, and notched impact strength of the composite increased. After adding 2.5 wt.% nanographene, these properties were reduced. By increasing the amount of nanographene, both the amount of residual ash and the thermal stability increased. Study of the images from scanning electron microscope (SEM) showed that the samples containing 0.5% of nanographene had less pores and were smoother than other samples.
  • Researchpp 1395-1402Olsson, C., and Westman, G. (2017). "Co-solvent facilitated in situ esterification of cellulose in 1-ethyl-3-methylimidazolium acetate," BioRes. 12(1), 1395-1402.AbstractArticlePDF
    The homogeneous conversion of cellulose to cellulose propionate with propionic acid anhydride in the ionic liquid 1-ethyl-3-methylimidazolium acetate and two different co-solvents, dimethyl sulfoxide and 1-methylimidazole, was studied. The software MODDE was used to generate an experimental design and evaluate the significance of the studied parameters. The methods 1H and 13C nuclear magnetic resonance (NMR) spectrometry and ion chromatography were used to analyze the obtained materials both qualitatively and quantitatively. The NMR spectrometry of dissolved cellulose esters confirmed there was covalent bonding with an even distribution pattern. From both ion chromatography and NMR spectroscopic data, it was concluded that by adding large amounts of co-solvent and using a high reagent-to-anhydroglucose unit ratio, it was possible to reduce the amount of acetylation caused by acetate anions in the ionic liquid. At the same time, it was shown that the reaction time and temperature was not at all significant in this respect. There was no notable difference detected in the degree of substitution between the reactions performed using dimethyl sulfoxide or 1-methylimidazole as a co-solvent.
  • Researchpp 1403-1416Xu, Y., Chen, M., and Zhou, X. (2017). "Improvement of the bondability of wheat straw treated by water vapor plasma for bio-composites manufacture," BioRes. 12(1), 1403-1416.AbstractArticlePDF
    Wheat straw (WS) was first modified with water vapor plasma to enhance its interfacial bonding performance. The treatment effects during the entire exposing process were investigated in terms of surface wettability, physicochemical characteristics, and mechanical properties of glued test-pieces (three different forms) using contact angle analysis, free energy analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and shear strength analysis. The results showed that 180 s of plasma treatment time resulted in a low instantaneous and equilibrium contact angle of urea-formaldehyde (UF) – 40.8% and 46.5% lower, respectively, in comparison with that of the untreated WS exterior surface. Obvious etching morphology was observed on the WS surfaces and positive activation was detected, demonstrating a remarkable increase in the surface free energy and O/C ratio. With the water vapor plasma treatment, the use of electrochemical reaction to introduce polar groups and etching to produce glue nails, were effective methods for improving the bonding performance of the WS.
  • Researchpp 1417-1429Söğütlü, C. (2017). "Determination of the effect of surface roughness on the bonding strength of wooden materials," BioRes. 12(1), 1417-1429.AbstractArticlePDF
    The purpose of this study was to determine the effect of surface roughness on bonding strength in Oriental beech, cherry, Scots pine, and Taurus cedar woods. In conformance with this objective, after planing the wooden materials under different conditions, their surface roughness values were determined in accordance with various standards using scanning equipment. The bonding strength test specimens were prepared using polyvinyl acetate (PVAc) and polyurethane (PUR) adhesives after the wooden materials were separated into three groups of varying surface roughness values, after which bonding strength experiments were carried out. The data obtained from the experiments were evaluated statistically at a 95% level of confidence. According to the test results, the highest bonding strength was obtained in the Oriental beech (9.27 N/mm2), whereas the lowest bonding strength was obtained in the Scots pine (3.65 N/mm2). There was not a statistically significant difference between the bonding strength of the cherry and Oriental beech woods. The PVAc adhesive (7.61 N/mm2) produced more successful results than the PUR adhesive (5.63 N/mm2). Furthermore, it was found that in the specimens with low surface roughness values for each wood type and used adhesives had high bonding strengths.
  • Researchpp 1430-1446Ratnasingam, J., Ark, C. K., Mohamed, S., Liat, L. C., Ramasamy, G., and Senin, A. L. (2017). "An analysis of labor and capital productivity in the Malaysian timber sector," BioRes. 12(1), 1430-1446.AbstractArticlePDF

    The remarkable transformation of the Malaysian timber sector from a net-importer to a multi-billion-dollar export-oriented sector has become a success model for many other resource-rich countries throughout the world. In view of the increasing socioeconomic importance of the timber sector in this country, the productivity performance of the six major timber sub-sectors was investigated in this study. Productivity is defined as the ratio of output to input and was analyzed from the year 2010 through 2014. The productivity performance was evaluated based on certain input factors, namely labor and capital. Generally, the productivity of the timber sector can be regarded as stagnating. Furthermore, the value-added was affected due to high reliance on labor for production. Among the factors that account for this lack of productivity growth are the increased competition in the international market, small domestic market, improper industrial development policies, poor adoption of technology, and the high dependency on human capital.

  • Researchpp 1447-1462Rashid, B., Leman, Z., Jawaid, M., Ghazali, M. J., and Ishak, M. R. (2017). "Influence of treatments on the mechanical and thermal properties of sugar palm fibre reinforced phenolic composites," BioRes. 12(1), 1447-1462.AbstractArticlePDF

    Sugar palm fibre (SPF) was used to prepare composites with phenolic resin. The SPF underwent treatment with either sea water for 30 d or a 0.5% alkaline solution for 4 h. The composites contained 30% (vol.) SPF in a powdered form, and the composite samples were fabricated by a hot press machine. The effects of the fibre treatments on the mechanical (flexural, impact, and compressive), thermal, and morphological properties of the composites were analyzed. The SPF treatments considerably improved the mechanical properties of the composites compared with the untreated composite. The alkaline treatment resulted in the most improved flexural and impact strength of the composites. In contrast, the sea water treatment had the best results for improving the compressive strength. Morphological analyses indicated that the surface treatments improved the fibre-matrix bonding. The thermal degradation analysis showed that both the sea water and alkaline treatments of the SPF slightly affected the thermal stability of the composites. Consequently, SPF can be effectively used as an alternative natural fibre for reinforcing bio-composites.

  • Researchpp 1463-1478Mateus, M. M., Ventura, P., Rego, A., Mota, C., Castanheira, I., Bordado, j. M., and dos Santos, R. G. (2017). "Acid liquefaction of potato (Solanum tuberosum) and sweet potato (Ipomoea batatas) cultivars peels - pre-screening of antioxidant activity/ total phenolic and sugar contents," BioRes. 12(1), 1463-1478.AbstractArticlePDF
    In the present study, the liquefaction of both regular and sweet potato peels was conducted to investigate the bio-oil produced, the sugar and total phenolic content, and antioxidant activity. Initially, the bio-oil obtained after liquefaction was partitioned into two different fractions, a hydrophilic fraction and the other consisted of the portion that contained the apolar compounds. Afterward, the samples of the whole bio-oil, aqueous extract, and organic phase of both cultivars were analyzed by attenuated total reflection- Fourier Transform infrared (ATR-FTIR) spectroscopy, hydroxyl number, and acid value. This was done in combination with assessment of the sugar and total phenolic contents and antioxidant activity. The samples demonstrated a considerable content of phenolic moieties in their composition. The antioxidant activity, which was assessed by the 2,2-diphenyl-1-picrylhydrazyl radical method, revealed that the antioxidants of the liquefied products and its extracts were generally better than that of butylated hydroxytoluene. Glucose, sucrose, and maltose were identified and quantified within all of the samples.
  • Researchpp 1479-1490Kubš, J., and Kminiak, R. (2017). "The effect of selected factors on the milled surface quality of thermally modified solid beech," BioRes. 12(1), 1479-1490.AbstractArticlePDF

    The milling of thermally modified wood is a very broad topic that deserves attention. The acquired knowledge concerning the geometry of the tool and milling process may assist manufacturers in designing new tools and thus improving the efficiency and quality of the process. This article focuses on finding the differences in the roughness of wood surfaces after surface milling of native beech wood (Fagus sylvatica L.) and thermally modified beech wood at 190 °C and differing technological conditions, cutting speeds (20, 30, and 40 m/s), feed speeds (4, 8, and 11 m/min), and rake angles of the tool (15°, 20°, and 25°). In comparison with natural wood, thermal treatment had a positive effect on the quality of the wood surface after milling. The results also demonstrated an increased quality of surface finish with a decrease in feed speed and increase in cutting speed.

  • Researchpp 1491-1505Li, C., Li, J. B., Lei, C. Y., and Liu, P. H. (2017). "Preparation and in vitro release mechanisms of modified pectin matrix tablets for colon-targeted drug delivery," BioRes. 12(1), 1491-1505.AbstractArticlePDF
    To deliver bioactive components to the colon, an oral, colon-targeted, microparticle delivery system was developed based on pectin. Pectin was modified by mechanical activation, resulting in controllable release properties, as well as dramatic decreases in solubility. Mechanically activated pectins (MAP) were characterized by Fourier transformed infrared (FTIR) spectroscopy, nuclear magnetic resonance (1H-NMR) spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The FTIR and 1H-NMR analyses revealed that after mechanical activation, the hydrogen bonds between pectin molecules were broken, and intermolecular crosslinking was decreased. The DSC analysis indicated that the thermal stability of pectin was decreased by mechanical activation. The SEM revealed that MAP particles were smaller, more uniform, and had smoother surfaces than unmodified pectin. An in vitro release assay and the study of drug release kinetics demonstrated that bovine serum albumin (BSA) release from MAP-containing matrix tablets was controllable. The results demonstrated that at a suitable pectin content and hydrophobicity level, matrix tablets prepared with MAP can exhibit good colon-targeted drug release.
  • Researchpp 1506-1531Lacoa, U., Velarde, G., Kay, M., Blanco, E., and Saloni, D. (2017). "Design and development of logistics models for residential and commercial biomass pellets for heat and power generation in the U.S.," BioRes. 12(1), 1506-1531.AbstractArticlePDF
    The U.S. is an important wood pellets producer for Europe, but in recent years there is special attention in the domestic market. This project developed mathematical logistics models in MatLab® that estimate distribution channels, transportation, and volumes for the domestic wood pellet demand. The models consider only demand in the northeastern U.S. based on current production in the Southeast. Two cases were studied: distribution to power plants and distribution to retail stores. Once the market needs were identified, logistics engineering principles and models were run to predict the distribution to different markets. Tools used in facility location and freight transportation analysis were run to provide an estimated logistic cost. One bulk pellet with 2 scenarios and 3 bagged pellet models (RISI 2016; 2017; 2018) with 2 scenarios were developed. After analyses for each model, it was concluded that wood pellet industry should direct its efforts to negotiate lower transport rates, which could represent a 70% cost reduction. While the wood pellet industry volume is smaller than the coal and chemical industries, the considerable cost difference indicates an opportunity to negotiate lower rates. The models developed can be used as tools to minimize the cost of distributing wood pellets to the northeast.

@BioResJournal

54 years ago

Read More