Research Articles
Latest articles
- Researchpp 2671-2680Cheng, H., Li, J., Feng, Q., Zhan, H., and Xie, Y. (2014). "Hot water extraction of corn stover: Hemicellulose fractionation and its effect on subsequent soda-AQ pulping," BioRes. 9(2), 2671-2680.AbstractArticlePDF
Fractionation of lignocellulosic biomass is an important process in producing biofuels. In this study, hot water extraction of corn stover hemicellulose was carried out at 150, 160, and 170 °C. Variations of sugar content in the hydrolysate under different holding time were detected. The contents of furfural and 5-hydroxymethyl-2-furaldehyde generated during the extraction were also determined. Results showed that the main composition of the hydrolysate was xylo-oligosaccharide; the yield of oligosaccharides first increased as holding time was prolonged. After extraction at 160 °C for 210 min, 70.2% of the total xylan was dissolved, with the generation of furfural (0.90 g/L) and 5-hydroxymethyl-2-furaldehyde (0.10 g/L). The effects of extraction on alkali pulping and bleaching were also investigated. Results indicated that soda-AQ pulp obtained from the extracted material had poorer tensile and burst strengths but better tear strength.
- Researchpp 2681-2688Li, P., Tao, Y., and Shi, S. Q. (2014). "Effect of fiber content and temperature on the dielectric properties of kenaf fiber-filled rigid polyurethane foam," BioRes. 9(2), 2681-2688.AbstractArticlePDF
Kenaf fiber-filled polyurethane foams were prepared using the free rising method. The dielectric constants and the loss tangents of the composites were studied as functions of fiber content (0, 5, 10, and 15 parts per hundred of polyols by weight), temperature (from 30 to 200 °C), and electric field frequency (from 20 Hz to 2 MHz). The dielectric constant and the loss tangent increased with increasing fiber content. The dielectric constant was very high in the range of 101 to 102 Hz and varied little in the range of 103 to 106 Hz, but decreased rapidly above 106 Hz. The loss tangent decreased as the frequency increased. The effect of frequency on the loss tangent value was greater at frequencies below 102 Hz. Higher temperatures led to a higher dielectric constant and loss tangent. When the temperature was above approximately 120 °C, the loss tangent dramatically increased. The incorporation of kenaf fiber can improve the growth rate of the dielectric constant with increasing temperature. The dielectric constant and the loss tangent increased with increasing fiber content, indicating that both the dielectric capability and energy dissipation ability of the composites were improved.
- Researchpp 2689-2695Zhang, D., Wang, G., and Ren, W. (2014). "Effect of different veneer-joint forms and allocations on mechanical properties of bamboo-bundle laminated veneer lumber," BioRes. 9(2), 2689-2695.AbstractArticlePDF
Bamboo-bundle laminated veneer lumber (BLVL) was produced by veneer lengthening technology. The objective of this study was to evaluate the effect of different veneer-joint forms and allocations on the mechanical properties of BLVL. Four veneer-joint forms, i.e., butt joint, lap joint, toe joint, and tape joint, and three lap-joint allocations, i.e., invariable allocation (Type I), staggered allocation (Type II), and uniform allocation (Type III), were investigated in laminates. The results revealed that the mechanical properties of veneer-joint BLVL were reduced in comparison with that of un-jointed BLVL. It was found that the best veneer-joint form was the lap joint laminate, of which the tensile strength, modulus of elasticity, and modulus of rupture values were reduced by 38.41%, 0.66%, and 10.92%, respectively, when compared to the un-jointed control samples. Type III showed the lowest influence on bending and tensile properties, followed by Type II.
- Researchpp 2696-2704Zhang, H., Luo, H., and Lu, X. (2014). "Reliability of compression strength of hennon bamboo-reinforced extruded tubular particleboard," BioRes. 9(2), 2696-2704.AbstractArticlePDF
This paper presents a new kind of composite produced with small-diameter bamboo (Phyllostachys glauca McClure) and extruded tubular particleboard. The mechanical properties of the composite are significantly affected by the properties of the bamboo. First, the compression strength of the bamboo was studied. It was found that the compression strength (fc, MPa) and the maximum force of compression (Fmax, kN) of the bamboo are strongly, linearly related to its outer diameter (D, mm): fc = -0.5D+79.37 and Fmax = 0.83D–0.59. The compression strength of the composite made with the bottom part of the bamboo was larger than that of composites made with the middle and top parts. In addition, its reliability was also the best of the three groups due to the variation of the outer diameter of the bamboo from the bottom to the top. The bottom part of the bamboo is the best choice for manufacturing bamboo-reinforced extruded particleboard (BREP).
- Researchpp 2705-2716Pan, P., Tang, Y., Sun, D., Jiang, J., and Song, X. (2014). "Effect of ultrasonic-assisted pretreatment on hydrolysis and fermentation of acorn starch," BioRes. 9(2), 2705-2716.AbstractArticlePDF
Acorn starch was used for ethanol production by separate hydrolysis and fermentation (SHF) in this study. The influence of tannins on hydrolysis and fermentation was investigated using ultrasonic-assisted extraction (UAE) to decrease the amount of tannin before SHF. The tannin was shown to have a negative role in hydrolysis and fermentation, and UAE can improve the two processes. The tannin content of acorn starch decreased from 6.19% to 1.91% with the UAE pretreatment time of 200 min. When the pretreatment time was 120 min, the glucose concentration increased from 78.08 to 98.76 g/L after 24 h of hydrolysis. The highest ethanol concentration was 42.22 g/L, which was obtained from the same pretreated acorn flour fermented for 12 h. However, the maximum ethanol yield was 88.06% of the theoretical yield, while pretreatment time was 80 min. Scanning electron microscope images indicated that protein was separated from the starch granules by UAE, as well as by the molecular weight of starch which decreased significantly based on the results from gel permeation chromatography (GPC) analysis.
- Researchpp 2717-2726Deng, A., Chen, J., Li, H., Ren, J., Sun, R., and Zhao, L. (2014). "Photo-degradation of methyl orange by polysaccharides/LaFe0.8Cu0.2O3 composite films," BioRes. 9(2), 2717-2726.AbstractArticlePDF
The objective of this work was to prepare a series of composite films (polysaccharides with LaFe0.8Cu0.2O3) for the degradation of methyl orange under ultraviolet irradiation. LaFe0.8Cu0.2O3 was prepared by a sol-gel method, and the composite films were obtained by cross-linking reactions between polysaccharides (xylan and chitosan) and LaFe0.8Cu0.2O3. Physical and chemical properties of the composite films were investigated by XRD, FTIR, SEM, and BET. Moreover, the influence of the weight ratio of polysaccharide to LaFe0.8Cu0.2O3 on the methyl orange degradation reaction was also studied. Results showed that 67% of the degradation efficiency was achieved within 480 min using chitosan/LaFe0.8Cu0.2O3 (2:1) as photocatalysts, while 58% was for xylan/LaFe0.8Cu0.2O3 (1:1). The difference was due to the variety in the structure of chitosan and xylan.
- Researchpp 2739-2756Wan Razali, W. A., Samsu Baharuddin, A., Zaini, L. A., Mokhtar, M. N., Taip, F. S., and Zakaria, R. (2014). "Effect of seed sludge quality using oil palm empty fruit bunch (OPEFB) bio-char for composting," BioRes. 9(2), 2739-2756.AbstractArticlePDF
In this study, a comparison between oil palm empty fruit bunch (OPEFB) composting using palm oil mill effluent bio-char solution (POMEBS) aerobic sludge and palm oil mill effluent (POME) anaerobic sludge was reported. A set of experiments was designed by central composite design (CCD) using response surface methodology (RSM) to statistically evaluate the POMEBS aerobic sludge as microbial seeding. The bacteria count of POMEBS aerobic sludge (3.7×106 CFU/mL) at the optimum point was higher than that of POME anaerobic sludge (2.5×105 CFU/mL). Denaturing gradient gel electrophoresis (DGGE) and Fourier transform infrared spectroscopy (FTIR) were also performed. A rotary drum composter was then used to compost OPEFB with POMEBS aerobic sludge and POME anaerobic sludge, separately. Thermogravimetric analysis (TGA) showed that composting OPEFB with POMEBS aerobic sludge had a higher degradation rate compared to composting OPEFB with POME anaerobic sludge. In addition, the final N:P:K values for composting OPEFB with POMEBS aerobic and POME anaerobic sludge were 3.7:0.8:6.2 and 1.5:0.3:3.4, respectively. POMEBS aerobic sludge improved the composting process and compost quality.
- Researchpp 2727-2738Dang, D., Wang, Z., Thygesen, A., Wang, C., Zhou, W., Xing, J., and Lin, W. (2014). "Bio-oil treated by cultivation of Saccharomyces cerevisiae (QH01)," BioRes. 9(2), 2727-2738.AbstractArticlePDF
Biomass is a renewable and CO2-neutral source of energy having the drawback of low energy density. The energy density can be augmented by the production of bio-oil through fast pyrolysis. The high content of water-extractable organic acids (oxygenates) in bio-oil is problematic in fuels. Cultivation of Saccharomyces cerevisiae for the consumption of these undesirable components can be used to upgrade the bio-oil. It was found that the bio-oil water phase can support the growth of S. cerevisiae at concentrations up to 20 vol. % under aerobic conditions. The oxygenates formic acid, acetic acid, and propionic acid had a promoting effect for the cultivation of S. cerevisiae in the following order: acetic acid > formic acid > propionic acid. However, phenol, p-cresol, and furfural inhibited the growth of S. cerevisiae. Kinetic analysis of the consumption of oxygenates showed that the regulation of S. cerevisiae was in accordance with a logistic function model.
- Researchpp 2757-2771Li, B., Liu, H., Xu, H., Pang, B., Mou, H., Wang, H., and Mu, X. (2014). "Characterization of the detailed relationships of the key variables in the process of the alkaline sulfite pretreatment of corn stover by multivariate analysis," BioRes. 9(2), 2757-2771.AbstractArticlePDF
In biomass pretreatment processes, both the properties of feedstock and process parameters play important roles in the yield of downstream enzymatic hydrolysis. More importantly, like many other industrial processes, the pretreatment system is multivariate and the variables in the system are inter-related to different extents, which means that studying the relationships of the key variables is of critical importance for the improvement of downstream enzymatic saccharification yield. In this work, two multivariate analysis methods of the Principal Component Analysis (PCA) and Partial Least Square (PLS) were employed to characterize the detailed relationships of the key process variables of alkaline sulfite pretreatment of corn stover. The results showed that the total alkali charge is positively correlated with the sugar content in pretreated biomass, lignin removal efficiency, and final sugar yield; pretreatment temperature has negative impact on the recovery of polysaccharides; and total alkali charge is more influential than other pretreatment process variables (such as Na2SO3/NaOH and temperature) under the conditions studied.
- Researchpp 2772-2781Liu, H. M., Wang, F.-Y., and Liu, Y. L. (2014). "Characterization of bio-oils from alkaline pretreatment and hydrothermal liquefaction (APHL) of cypress," BioRes. 9(2), 2772-2781.AbstractArticlePDF
Four bio-oils obtained from the hydrothermal liquefaction (at 280 °C for 0 min) of untreated and pretreated cypresses were subjected to several types of chemical analyses to compare their structural features and chemical constituents. Pretreatments were carried out with alkali at 90 °C for 0.5, 1, and 2 h. The bio-oils were further divided into water-soluble oil, diethyl ether-soluble oil, and diethyl ether-insoluble oil fractions. Alkaline pretreatment had a significant effect on the contents of different components in the bio-oils. The diethyl ether-insoluble oil fraction was made up of intermediate-sized macromolecular fragments of lignin decomposed during the hydrothermal liquefaction process. The G6 resonance, β-5, β-β’, and β-O-4’ peaks (which were present in the spectra of milled-wood lignin) almost disappeared from the spectra of the diethyl ether-insoluble oil fractions obtained via hydrothermal liquefaction of pretreated and untreated cypresses. At the same time, the intensities of the peaks corresponding to methoxy groups, G2, and G5 resonances were reduced. Long-duration alkaline pretreatment created a strong, highly water-soluble oil fraction with a wide molecular weight distribution.