NC State
BioResources
  • Researchpp 8496-8508Fabisiak, E., and Mania, P. (2016). "Variation in the microfibril angles in resonance and non-resonance spruce wood (Picea abies [L.] Karst.)," BioRes. 11(4), 8496-8508.AbstractArticlePDF

    Variation in microfibril angle (MFA) in the S2 of the tangent cell walls of resonance and non-resonance spruce wood (Picea abies [L.] Karst.) used in the manufacture of musical instruments was studied. MFA was measured directly after preliminary visualisation of microfibrils in the cell walls. In the tested samples the position of an annual ring in the samples had no significant influence on the MFA. In the resonance wood, MFA values were between two and three times smaller than in the non-resonance wood. In the resonance wood, the differences in the MFA between earlywood and latewood were smaller, and the MFA fluctuations were also smaller.

  • Researchpp 8509-8521Muzamal, M., Bååth, J. A., Olsson, L., and Rasmuson, A. (2016). "Contribution of structural modification to enhanced enzymatic hydrolysis and 3-D structural analysis of steam-exploded wood using X-ray tomography," BioRes. 11(4), 8509-8521.AbstractArticlePDF
    Steam explosion pretreatment modifies both the chemical and physical structures of a biomass. Chemical modifications are generated during the treatment of biomass with steam at high temperature. Physical modifications are created during the explosion step, which produces disintegrated and defibrillated biomass. In this study, the contribution of each modification to an increase in enzymatic hydrolysis has been studied. It was found that both physical and chemical modifications contributed to an increase in enzymatic hydrolysability. Additionally, high resolution X-ray tomography was performed to identify the structural modification created during the steam explosion process. Comparison of the 3-D micro-structure of a steam-exploded wood sample with an untreated wood sample revealed that several kinds of cracks were created during the explosion step, and the micro-structure of the wood sample was vigorously destroyed.
  • Researchpp 8522-8534Hýsek, Š., Wimmer, R., and Böhm, M. (2016). "Optimal processing of flax and hemp fibre nonwovens," BioRes. 11(4), 8522-8534.AbstractArticlePDF

    Processing was studied for air-laid nonwovens from natural hemp and flax fibres using SPIKE® air-laying technology (Formfiber Denmark ApS Company). The process of web-formation and the properties of the fibre-webs before needle-punching and reinforced fibre-mats were evaluated. The settings of the air-laying machine were found to influence the web-formation process and nonwoven properties. In order to monitor web-formation processes and evaluate the fibre-web or fibre-mat quality, several machine settings were defined that enhanced the productivity of the machine or favoured fabrication of nonwovens with high density or great tensile properties.

  • Researchpp 8535-8547He, W., Tian, J., Li, J., Jin, H., and Li, Y. (2016). "Characterization and properties of cellulose nanofiber/polyaniline film composites synthesized through in situ polymerization," BioRes. 11(4), 8535-8547.AbstractArticlePDF
    Cellulose nanofiber/polyaniline (CNF/PANI) composites films were synthesized through in situ polymerization of aniline in a nanocellulose suspension that was isolated from bamboo (Phyllostachys nidularia Munro). The PANI contents were 5 wt.%, 15 wt.%, or 30 wt.%. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the CNF nanofibril surfaces were uniformly coated by PANI particles. Moreover, Fourier transform infrared (FTIR) spectroscopy analysis indicated the formation of hydrogen bonds between the amine groups of aniline and the hydroxyl groups of cellulose. X-ray diffraction (XRD) analysis demonstrated that the cellulose I structure of CNF in the composites did not change, while the crystallinity of CNF was affected. Thermogravimetric analysis (TGA) showed that the thermal stability of CNF was increased due to the addition of PANI. Meanwhile, the obtained electrical conductivity and mechanical properties of the CNF/PANI composites indicated that the composites could be used potentially in anti-static materials, for shielding of electromagnetic radiation, and in biological sensors.
  • Researchpp 8548-8557Zhai, M., Guo, L., Zhang, Y., Dong, P., Qi, G., and Huang, Y. (2016). "Kinetic parameters of biomass pyrolysis by TGA," BioRes. 11(4), 8548-8557.AbstractArticlePDF

    Pyrolysis processes of typical biomass, such as corn stalk and birch chips, were investigated by thermogravimetric analysis (TGA). The apparent activation energy and pre-exponential factor were calculated with the adoption of the improved Coats-Redfern integral method, 46 types of common mechanism functions, and the least square and iterative methods. By applying basic parameters of biomass pyrolysis, a reaction rate constant, activation entropy and activation enthalpy, activation Gibbs free energy, and the steric-hindrance factor were all calculated. Results showed that biomass pyrolysis can be divided into two primary reaction zones (Event 3 and Event 4). Event 3 is focused by cellulose and hemicellulose. Event 4 is oriented by lignin and cellulose. The thermogravimetric curves of the two biomass types under carbon dioxide and nitrogen atmospheres were roughly similar. The reaction mechanism function is 1 – alpha. It is possible to use activation entropy to represent the pre-exponential factor and to use the steric hindrance factor to predict the reaction rate.

  • Researchpp 8558-8569Chen, T., Xie, Y., Wei, Q., Wang, X., Hagman, O., Karlsson, O., Liu, J., and Lin, M. (2016). "Improving the mechanical properties of ultra-low density plant fiber composite (ULD_PFC) by refining treatment," BioRes. 11(4), 8558-8569.AbstractArticlePDF

    To improve the mechanical properties of ultra-low density plant fiber composite (ULD_PFC), a suitable beating process to improve the fibrillation of cellulose fibers and maintain their length was investigated. The physical properties of cellulose fibers and papers, surface chemical bonds, and internal bond strength (IB) of ULD_PFCs were analyzed. The results showed that the beating degrees, degree of fibrillation, and fiber fines increased with the decreasing of beating gap, except for the fiber weight-average length, width, kink index, and curl index. The tensile index and burst index of paper showed an increasing trend with an increase in beating degree, while the tear index showed a decreasing trend. FTIR results showed that intermolecular and intramolecular hydrogen bonds in ULDF were broken. A suitable beating gap of 30 μm with a beating degree of 35 °SR was obtained. The corresponding IB was 50.9 kPa, which represented an increase of 73.1% over fibers with a beating degree of 13 °SR.

  • Researchpp 8570-8588Duan, R., Westerlind, B. S., Norgren, M., Anugwom, I., Virtanen, P., and Mikkola, J. P. (2016). "Fibre stress-strain response of high temperature chemi-thermomechanical pulp treated with switchable ionic liquids," BioRes. 11(4), 8570-8588.AbstractArticlePDF

    The removal of lignin from a high-temperature chemi-thermomechanical pulp (HT-CTMP) using a switchable ionic liquid prepared from an organic superbase (1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU)), monoethanol amine (MEA), and SO2 was investigated. The objective was to measure the fibre properties before and after removal of the lignin to analyse the contributions from lignin in the HT-CTMP fibre to the tensile properties. It was found that the fibre displacement at break – measured in zero span, which is related to fibre strain at break – was not influenced by the lignin removal in this ionic liquid system when tested dry. There was a small increase in displacement at break and a reduction in tensile strength at zero span when tested after rewetting. At short span, the displacement at break decreased slightly when lignin was removed, while tensile strength was almost unaffected when tested dry. Under rewetted conditions, the displacement at break increased and tensile strength decreased after lignin removal. Nevertheless, no dramatic differences in the pulp properties could be observed. Under the experimental conditions, treatment with the ionic liquid reduced the lignin content from 37.4 to 15.5 wt%.

  • Researchpp 8589-8614Chen, F. X., Gong, P., Zhang, H. K., Bai, X. H., Gao, Y. F., and Zhou, A. N. (2016). "Biomass pyrolysis of Helianthus annuus stems: qualitative and quantitative study based on Py-GC/MS," BioRes. 11(4), 8589-8614.AbstractArticlePDF

    The pyrolytic product vapor of Helianthus annuus stems was analyzed by Pyrolysis–gas chromatography–mass spectrometry (Py-GC/MS) using the internal standard (ISTD) method with different pyrolysis temperatures and times. 1,3,5-tri-tert-butylbenzene (TTBB) was found to be the best ISTD chemical in this study. Scanning electron microscopy (SEM) revealed that, for the solid-state product, the pores and mesh structure gradually increased along with the pyrolysis temperatures and time. Sintering and porous destruction were observed at a lower pyrolysis temperature (600 °C) with longer time (0.5 min). The pyrolysis vapors contained small gas molecules such as CO2 as well as complex organic compounds, mainly alcohols, esters, acids, aldehydes, ketones, aromatic compounds, etc. In these products, aldehyde, ketone, and aromatic compounds were the main biochemicals; the appropriate pyrolysis temperature to produce aldehydes and ketones was 700 °C, and 600 °C was suitable for aromatic compounds. The regularity of the distribution of products and pyrolytic conditions was explored through eight representative compounds. The relationship between the product contents and pyrolysis conditions were complex for Helianthus annuus stems, but partial least squares discriminant analysis (PLS-DA) methods were a powerful tool for screening biochemicals whose absolute contents were sensitive to the pyrolysis conditions.

  • Researchpp 8615-8626Indarti, E., Roslan, R., Marwan., and Wan Daud, W. R. (2016). "Polylactic acid bionanocomposites filled with nanocrystalline cellulose from TEMPO-oxidized oil palm lignocellulosic biomass," BioRes. 11(4), 8615-8626.AbstractArticlePDF

    Bionanocomposites from polylactic acid (PLA) filled with unmodified nanocrystalline cellulose from TEMPO-oxidized oil palm empty fruit bunch (OPEFB-NCC) at various loading levels were fabricated using the solvent casting technique. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATF-FTIR), differential scanning calorimetry (DSC), and mechanical analyses were used to characterize the bionanocomposite films. FTIR suggested that the incorporation of the OPEFB-NCC was based on physical interaction. The melting temperature did not change markedly except at higher OPEFB-NCC additions, while the crystallization temperature shifted to lower temperatures and crystallinity increased with increasing OPEFB-NCC content.The SEM of cryo-fractured films indicated a rather weak compatibility between the OPEFB-NCC and PLA, resulting in the decrease of both the modulus and the tensile strength of the bionanocomposite.

  • Researchpp 8627-8637Tian, X., Wang, B., Li, J., Zeng, J., and Chen, K. (2016). "Surface grafting of paper with photochromic spiropyran ether methacrylate," BioRes. 11(4), 8627-8637.AbstractArticlePDF
    It was demonstrated that a photochromic paper could be made through the atom transfer radical polymerization (ATRP) method by grafting spiropyran ether methacrylate (SPMA) onto the fiber surface. The surface composition and topography of the grafted paper were analyzed by Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectra (XPS), and scanning electron microscopy-energy dispersive spectrometer (SEM-EDS). Crystal structures of the cellulosic fibers were also examined after the grafting reaction. The characteristic absorption bands detected in the FTIR spectrum after grafting suggested that a new functional group was formed by the reaction. The XPS and SEM results confirmed that SPMA was grafted onto the surface of the fibers successfully. The grafted spiropyran groups exhibited reversible photochromic properties when exposed to UV light irradiation and visible light. The modified paper showed a purple color under UV light irradiation and changed back to its original color when exposed to visible light. This surface modification using ATRP was demonstrated to be a feasible way to prepare photochromic paper.

@BioResJournal

54 years ago

Read More