NC State
BioResources
  • Researchpp 4046-4055Wang, Y., and Song, X. (2013). "Oxidized fiber from dissolved air flotation rejects and its influences on paper properties," BioRes. 8(3), 4046-4055.AbstractArticlePDF

    Fibers obtained from dissolved air flotation rejects were oxidized using a TEMPO oxidation system to prepare oxidized recovered fibers. The effects of oxidization time on carboxyl content, water retention value, and physical properties of handsheets were evaluated. The effects of pH, amount of oxidized recovered fibers, and aluminum sulfate on paper properties were also considered. The results showed that carboxyl content and water retention values increased with the increasing of oxidized time. FTIR analysis indicated that carboxyl groups were connected to the surface of fibers. SEM micrographs showed that fibers were integrated more closely in the paper sheet, benefiting from the addition of the oxidized recovered fibers. Tensile index, burst index, and folding endurance were respectively increased by 71.7%, 38.5%, and 600% when 3% of oxidized recovered fibers was added to the pulp at pH 5, with 0.5% aluminum sulfate addition, based on the original pulp. Tensile index and folding endurance were increased by 40.2% and 433.3%, respectively, when 1% oxidized recovered fibers (the oxidized time was 60 min) were added into pulp for recycled pulp. This finding may lay the foundation for greater re-use of fiber obtained from dissolved air flotation rejects.

  • Researchpp 4072-4087Li, Q., Xie, J., Zhao, L., Xue, Q., and Pei, J. (2013). "Optimization of fermentation conditions for laccase production by recombinant Pichia pastoris GS115-LCCA using response surface methodology and its application to dye decolorization," BioRes. 8(3), 4072-4087.AbstractArticlePDF

    In this work, recombinant Pichia pastoris GS115-lccA was cultured and expressed with the highest laccase activity of 2357 U/L with ABTS (2, 2′-nazinobis-(3-ethylbenzthiazoline-6-sulphonate)) as reacting substrate. To achieve the higher laccase activity, multiple key factos were screened (using a Plackett-Burman design of experiments methodology) related to the fermentation conditions for producing GS115-lccA. Subsequently, a Box-Behnken response surface methodology was employed for further optimization. The optimum fermentation conditions of the fermentation were obtained as follows: 0.603% methanol added into the culture every 24 h, medium optimal initial pH 7.1, and liquid medium volume of 20.4% provided the highest enzyme activity of 5235 U/L. The decolorization experiments of dyes (Reactive Blue KN-R and Acid Red 35) were carried with the laccase cultured by recombinant P. pastoris GS115-lccA. This purified enzyme showed excellent decolorization capacity. After 24 h, the decolorization of Reactive Blue KN-R with 100 mg/L at 50 °C, pH 4.5 using 20 mM acetate buffer with 2 U/mL purified enzyme was 91.33%, and for Acid Red 35, the decolorization was 78.96%. All results suggested that this laccase may be suitable for the wastewater treatment of similar azo and anthraquinone dyes from the deinking and dyeing industries.

  • Researchpp 4088-4100Hazwani, H. A., Ainun, Z. M. A., Nurul, I. M. Z., Abdullah, L. C., and Zakaria, S. (2013). "Effects of physical treatments on the hydrophobicity of kenaf whole stem paper surface using stearic acid," BioRes. 8(3), 4088-4100.AbstractArticlePDF

    Kenaf (Hibiscus cannabinus L.) is a relatively new industrial crop which has been identified as an alternative source of fiber in the papermaking industry in Malaysia. In this study, experimental unbleached kenaf kraft paper samples were used as a substrate to produce water-resistant paper by employing a special coating. In the preparation of the coating formulation, commercially precipitated calcium carbonate (PCC) was used as the filler, in addition to 0 to 0.32 w/w g of hydrophobic stearic acid (SA). Polymer latex (PL) was added at 0.4 to 0.16 w/w g into the coating compound to control the surface roughness of the samples. The paper morphology was examined by employing a scanning electron microscope (SEM). Hydrophobic kenaf kraft paper prepared in this study had water contact angle (θ) greater than 90°. Hydrophobic paper made with formulation PL4c resulted in the highest value contact angle of 147°. The process of surface coating by dipping increased the water contact angle and this treated paper achieved a high hydrophobic level. For mechanical properties, the coated kenaf paper showed decreasing tensile strength as the addition of stearic acid increased.

  • Researchpp 4101-4116Zhou, Z., Zhao, M.-C., Wang, Z., Wang, B. J., and Guan, X. (2013). "Acoustic testing and sorting of Chinese poplar logs for structural LVL products," BioRes. 8(3), 4101-4116.AbstractArticlePDF

    The purpose of this study was to investigate the feasibility of using resonance-based acoustic technologies for sorting Chinese poplar logs for laminated veneer lumber (LVL) products. Representative poplar logs were sampled. Each log was first tested for acoustic velocity and then peeled into veneer. Each veneer sheet was subsequently dried and measured with a production-line veneer tester. LVL beams were made, and their stiffness was non-destructively measured by both time-of-flight (TOF) acoustic method and free-beam vibration methods. Based on the LVL dynamic modulus of elasticity (MOE) values, logs were sorted into several grades with known grade outturns. The results showed that there was a strong correlation between resonance-based acoustic velocities of logs and dynamic MOE of veneer and LVL. Thus, it is feasible to predict the stiffness of LVL products based on log resonance-based acoustic velocity measured. The resonance-based acoustic measurement is easy to use and reliable, which can help increase the grade outturn and in turn value recovery of Chinese poplar logs. It was estimated that the log grade outturns were approximately 31.1% for LVL grade 1, 38.6% for LVL grade 2, and 26.1% for LVL grade 3.

  • Researchpp 4117-4133Varhimo, P. U. A., Konn, J., Lillandt, M. K.-J., and Paltakari, J. T. "Brightness reduction of mechanical pulp in the wet end of a paper machine: The effect of different ions in the circulation water," BioRes. 8(3), 4117-4133.AbstractArticlePDF

    Darkening of the fines and fiber fraction of peroxide-bleached thermo-mechanical pulp (TMP) was studied on a laboratory scale using a device that simulates the short circulation of a paper machine. Selected chemicals were dissolved in the circulation water to study the effect of different cations and anions. Ferrous ions darkened the fines and fiber fraction by increasing the light absorption. It is very important to keep the iron content of the pulp and white water as low as possible because even low contents of iron have a negative effect on the brightness of produced paper. Also, chloride ions decreased the brightness by increasing the light absorption of the fines and fiber fraction. Calcium ions increased both the light absorption and light scattering of the fines fraction. The increased light absorption dominated and the brightness decreased. Calcium chloride is used very commonly as a model chemical for calcium ions in laboratory tests, but the use of it is not recommended, if the darkening phenomena are studied, because chloride ions decrease the brightness. Aluminum ions increased the brightness of the fines fraction by increasing the light scattering. Manganese, sodium, sulfate, or carbonate ions did not affect the optical properties.

  • Researchpp 4134-4141Karimi, A., Taghiyari, H. R., Fattahi, A., Karimi, S., Ebrahimi, G., and Tarmian, A. (2013). "Effects of wollastonite nanofibers on biological durability of poplar wood (Populus nigra) against Trametes versicolor," BioRes. 8(3), 4134-4141.AbstractArticlePDF

    The effect of impregnation with wollastonite nanofibers, a nontoxic mineral material, on the biological durability of poplar wood (Populus nigra) against a white-rot fungus (Trametes versicolor) was studied. Wollastonite nano-suspension with a concentration of 6.3% was used; the size range of the nano-wollastonite (NW) was 30 to 110 nm. Results showed that decay exposed for 16 weeks in accordance with the standard DIN-52176 specifications resulted in a 47.5% mass loss in control specimens, while in the NW-impregnated specimens, only 3.6% mass loss occurred. Mechanical tests on separate sets of specimens impregnated with NW without exposure to the decay organism showed no significant difference in the mechanical properties. Thus, it can be concluded that impregnating poplar wood with NW as a preservative significantly increases the biological durability of poplar wood against deterioration by Trametes versicolor. Furthermore, it does not have negative effects on the mechanical properties in the impregnated poplar specimens.

  • Researchpp 4142-4154Wang, D., Li, D., and Liu, Y. (2013). "High quality bio-oil production via catalytic pyrolysis of pine sawdust," BioRes. 8(3), 4142-4154.AbstractArticlePDF

    The objective of this study was to increase the selectivity of hydrocarbons in bio-oil by changing the degree of closure of the reactor. Using pine sawdust with a particle size of 0.5 to 0.8 mm as the pyrolysis material and HZSM-5 with a SiO2/Al2O3 ratio of 60 as the catalyst, biomass catalytic pyrolysis experiments were carried out in a fixed bed reactor. The bio-oil compositions as a function of the closure time of the reactor and the catalyst-to-biomass weight ratios were investigated. The deactivation of the catalysts was also evaluated. The selectivity for the hydrocarbons obtained in the bio-oil was 18.99% at conditions of 550 °C reaction temperature and 20 wt% HZSM-5 catalyst usage with no closure time. When the closure time of the fixed bed reactor was 1 h, the selectivity of the hydrocarbons reached 95.28%, and the heating value reached 32.5 MJ/kg; however, the organics yield in the liquid product was only 6.2%. This investigation verified that the quality of the bio-oil could be improved significantly through the closure of the reactor, which could be due to pyrolysis vapors that could be treated by the coupling effect between a high pressure and catalytic pyrolysis.

  • Researchpp 4155-4170Li, S.-M., Sun, S.-L., Ma, M.-G., Dong, Y.-Y., Fu, L.-H., Sun, R.-C., and Xu, F. (2013). "Lignin-based carbon/CePO4 nanocomposites: Solvothermal fabrication, characterization, thermal stability, and luminescence," BioRes. 8(3), 4155-4170.AbstractArticlePDF

    This work explored the synthesis of carbon-based luminescent materials using cheap, natural resources. Lignin-based carbon/CePO4 nanocomposites were successfully synthesized using previously extracted lignin solution and CePO4, or NaH2PO4•2H2O and Ce(NO3)3•6H2O by the solvothermal method at 200 °C for 24 h, respectively. The lignin solution was previously prepared by the extraction of wood powder in a mixed solvent of dimethyl sulfoxide (DMSO)/lithium chloride (LiCl). All of the obtained lignin-based carbon/CePO4 nanocomposites were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectra (EDS), Fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and photoluminescence (PL). SEM micrographs showed that the CePO4 concentration had an influence on the size, microstructure, and morphology of the carbon/ CePO4 nanocomposites. The experimental results indicated that the obtained lignin-based carbon/CePO4 nanocomposites had excellent PL properties.

  • Researchpp 4171-4184Khan, T. A., Gupta, A., Jamari, S. S., Jose, R., Nasir, M., and Kumar, A. (2013). "Synthesis and characterization of carbon fibers and their application in wood composites," BioRes. 8(3), 4171-4184.AbstractArticlePDF

    Carbon fibers were synthesized using a low-cost, economical method. Fresh rubber wood fibers (Hevea brasiliensis) were burned using a furnace in an inert condition at 350 to 450 oC for 2-4 hours, and after that the fibers were ground at 18000 rpm for 20 to 40 seconds. The effect of carbon fibers as a reinforcement agent on mechanical, physical, and morphological properties was investigated. In the composite preparation, carbon fiber dosages (0, 0.1, 0.25, and 0.5 wt.%) were used as variable factors, along with a urea formaldehyde content of 10%. The morphology of the specimens was characterized using X-ray diffraction (XRD), Thermogravimetric analysis (TGA), and Field Emission Scanning Electron Microscopy (FESEM). The mechanical tests indicated that when carbon fibers were added, the modulus of rupture (MOR) and internal bonding strength (IB) improved significantly. From the TGA graph it was observed that the thermal stability of the composites based on carbon fiber was higher than composites without it. The thermocouple readings showed that at a higher loading of carbon, the core temperature of the board increased faster than for the control board.

  • Researchpp 4185-4192Zhou, J., Zhou, H., Hu, C., and Hu, S. (2013). "Measurements of thermal and dielectric properties of medium density fiberboard with different moisture contents," BioRes. 8(3), 4185-4192.AbstractArticlePDF

    The thermal and dielectric properties of medium density fiberboard (MDF) with different moisture contents were measured by light flash and the parallel-plane capacitor method, respectively. The results show that increasing moisture content has a positive effect on both thermal properties and dielectric properties. The higher the moisture content, the higher the thermal conductivity and dielectric properties were. The thermal conductivity of MDF with different moisture contents varies in the temperature range of 25 to 150 ºC in a double-hump pattern rather than a proportional pattern. The dielectric constant decreases with increasing frequency up to 1000 MHz. The dielectric loss factor undulates within the frequency range of 1 to 100 MHz, and the peak value occurs at around 10 MHz. The results presented in this study can be used for radio frequency heating, wood building energy, material design, and radio frequency evaluation.

@BioResJournal

55 years ago

Read More