NC State
BioResources
  • Researchpp 4711-4725Pulkrab, K., Sloup, R., and Podrázský, V. (2015). "Production potential of the forests in the Czech Republic," BioRes. 10(3), 4711-4725.AbstractArticlePDF

    This article discusses the production potential (and limits) of the forests in the Czech Republic (CR). The calculation respects ecological limits set by typological system and the Czech forestry legislation. The key criterion of the production evaluation is the total mean increment. Usually, a forest owner can choose amongst several variants of management. The analysis in this work examines the two limit variants – the minimum and maximum production potential. The results show that, e.g., the Norway spruce share might be 19 to 48% of the total area of Czech forests (51.4% at present). The target management the owners opt for (Norway spruce, pine, oak, and beech) can, in the future, influence the timber processing industry, the main purchaser of timber raw material from Czech forests. The maximum variant shows 9,134 thousand m3 of available coniferous round timber, while the minimum one only 3,802 thousand m3 per year. Therefore, the timber processing industry should keep a close watch on the situation and either try to persuade forest owners to choose the alternative of the target management that would provide sufficient assortment for timber processing, or adjust the manufacture to the possible changes in the species composition of the forests.

  • Researchpp 4726-4739Lunguleasa, A., Spirchez, C., and Griu, T. (2015). "Effects and modeling of sawdust torrefaction for beech pellets," BioRes. 10(3), 4726-4739.AbstractArticlePDF

    This study was done to determine the effects of beech sawdust torrefaction on pellets obtained in the laboratory. Torrefied beech (Fagus sylvatica L.) sawdust was used to make pellets. This species was chosen based on the existence of a market for such micro-briquettes. Rigorous comparisons between torrefied and non-torrefied pellets were conducted. It was found that treating the sawdust had both beneficial and non-beneficial effects, but the total effect is positive. Economical elements were also considered, emphasizing the use of wood biomass as fuel. Theoretical and experimental aspects are taken into consideration, the experimental results being used to validate the theoretical model. The experiments performed demonstrate that heat treatment can add value if it meets certain parameters, such as a maximum temperature of 260 °C for 5 min. Heat treatment of beech sawdust in the form of pellets or briquettes was shown to be a simple, viable, effective treatment because the heating process improves the calorific value and other relevant properties of the torrefied sawdust.

  • Researchpp 4740-4750Bučar, D. G., and Merhar, M. (2015). "Impact and dynamic bending strength determination of Norway spruce by impact pendulum deceleration," BioRes. 10(3), 4740-4750.AbstractArticlePDF

    This research was conducted to determine the impact bending strength and dynamic bending strength of Norway spruce wood from Slovenia. An accelerometer was added to the impact pendulum in order to capture the material’s response to an instantaneous load. Impact bending strength of specimens were determined by standard method measuring the height of pendulum before and after the break. While measuring the impact pendulum decelerations during the fracture of the specimen, the impact bending strength and dynamic bending strength was calculated. Correlations between the measured properties were determined, for which the R2 was in the range 0.88 to 0.51 between the standard and accelerometer method and between the impact bending strength and dynamic bending strength, respectively. The results confirmed that the methods used to determine the impact bending strength were comparable and that it was possible to determine dynamic bending strength on the basis of impact pendulum deceleration measurement.

  • Researchpp 4751-4767Segovia, F., Blanchet, P., Barbuta, C., and Beauregard, R. (2015). "Aluminum-laminated panels: Physical and mechanical properties," BioRes. 10(3), 4751-4767.AbstractArticlePDF

    Aluminum lamination was performed to improve the physical and mechanical properties of several wood-based composite panels. The panels were aluminum-laminated on two faces in a hot press at 689 kPa and 120 °C for 6 min. Four types of wood-based composites were used as cores, and aluminum 3003 alloy sheets were used for face laminations. Polyurethane adhesive ensured bonding strength between the wood-based composite and the aluminum sheets. The objective was to assess sandwich composite panels made of wood-based composites as a core layer with aluminum-laminated faces. This study evaluated the physical and mechanical properties of these panels. The results show that aluminum-laminated panels had higher dimensional stability (thickness swelling and linear expansion values). Bending properties such as the apparent modulus of elasticity (Eapp) and the modulus of rupture (MOR) were significantly increased with face-lamination. Medium-density fiberboard (MDF) laminate presented an increase of 554% for Eapp and 570% for MOR in comparison with non-laminated MDF panels. The shear edgewise strength for oriented strand board and plywood increased by 44% and 77%, respectively. The results confirm that aluminum-laminated panels have the potential to be used as structural panels in future applications.

  • Researchpp 4768-4783Hossein, M. A., Talaeipour, M., Hemmasi, A. H., Bazyar, B., and Mahdavi, S. (2015). "Effects of sequencing enzyme application and refining on DIP properties produced from mixed office waste paper," BioRes. 10(3), 4768-4783.AbstractArticlePDF

    The effect of changing the sequence of refining and enzymatic treatment on the properties of deinked pulp from mixed office waste paper (MOW) was investigated. The sequences included refining before and after enzymatic treatment. Refining was applied for 700 and 1500 revolutions, and the consistency of pulps during enzymatic treatment was 5, 8, and 13%. Enzymatic treatment was applied for 20, 40, and 60 min. After each of the sequences, the deinking stage was the same. When refining was applied after the enzymatic treatment, the freeness of pulp was greater than that of the pulp on which refining was conducted before the enzymatic treatment, at a constant refining speed. Better strength properties were produced when refining was carried out before the enzymatic treatment. Also, the results of testing the optical properties of deinked pulp showed that brightness and ERIC improved when refining was carried out before the enzymatic treatment.

  • Researchpp 4784-4794Liu, G., Zhang, G., Wang, P., Xiang, R., and Fu, X. L. (2015). "Synthesis and application of polymeric fluorescent compounds based on coumarin," BioRes. 10(3), 4784-4794.AbstractArticlePDF

    In this work, a multifunctional yellowing inhibitor was synthesized by the Pechmann method. In order to obtain the target compound, 7-hydroxy-4-methyl coumarin was prepared by using the raw materials of resorcinol and ethyl acetoacetate, with toluene-p-sulfonic acid as the catalyst. New polymeric fluorescent compounds were synthesized by connecting the 7-hydroxy-4-methyl coumarin, the hindered amine light stabilizer 4-amion-2,2,6,6-tetramentylniperidine, and a series of polyethylene glycol segments into the same molecule with cyanuric chloride as a bridge. The structures of the synthesized molecules were confirmed by FT-IR, 1H NMR, and elemental analysis. The luminescent properties of the fluorescent compounds were studied by UV-vis spectroscopy and fluorescence spectroscopy. The integration effect between the fluorescent compounds and paper was tested by a scanning electron microscope. The light stability effect on the paper sheet was tested using an ultraviolet aging apparatus. The results indicate that the polymeric fluorescent compounds had a positive effect on the light stability of the high-yield pulp.

  • Researchpp 4795-4810Ang, A., Ashaari, Z., Bakar, E. S., and Ibrahim, N. A. (2015). "Characterization and optimization of the glyoxalation of a methanol-fractionated alkali lignin using response surface methodology," BioRes. 10(3), 4795-4810.AbstractArticlePDF

    The glyoxalation of a methanol-fractionated alkali lignin was executed at 60 °C for 8 h with different amounts of glyoxal (40% in water) and 30% NaOH. The weights of the lignin and water were fixed at 10.0 and 15.0 g, respectively. The gel permeation chromatography (GPC) results indicated that depolymerization of lignin molecules occurred during the glyoxalation process. However, a higher polydispersity index (Mw/Mn) of all glyoxalated lignins compared to the unmodified lignin (ML) showed that lignin polymers with a variety of chain lengths were generated through the crosslinking and through the repolymerization of lignin molecules via methylene (CH2) bridges and new, strong C-C bonds after the condensation reaction. This was confirmed by thermogravimetry analysis (TGA). Optimum amounts of glyoxal and NaOH to be used in the glyoxalation process were ascertained by quantifying the intensity of relative absorbance for the CH2 bands obtained from FT-IR spectra and by using response surface methodology (RSM) and central composite design (CCD), which facilitated the development of a lignin with appropriate reactivity for wood adhesive formulation. The experimental values were in good agreement with the predicted ones, and the model was highly significant, with a coefficient of determination of 0.9164. The intensity of the relative absorbance for the CH2 band of 0.42 was obtained when the optimum amounts of glyoxal and NaOH, i.e., 0.222 and 0.353, respectively, were used in the glyoxalation process.

  • Researchpp 4811-4825Zhai, R., Song, B., and Zhou, X. (2015). "Modifying the refining energy consumption of chemi-mechanical pulping with NaOH-thiourea-urea aqueous solution," BioRes. 10(3), 4811-4825.AbstractArticlePDF

    To reduce the refining energy consumption of chemi-mechanical pulping, treatment with NaOH-thiourea-urea aqueous solution was studied in this work. By means of single-factor experiments, the effects of alkali dosage, soaking time, and freezing time were evaluated. It was found that the optimal conditions were an alkali dosage of 8%, soaking time of 45 min, and freezing time of 105 min. The results revealed that refining energy consumption could be reduced by approximately 40% under optimal conditions compared with that of alkaline peroxide mechanical pulp, while other pulping or paper-making properties were similar. There were no significant effects on the structure of the functional groups, the crystalline region of the pulp, or the whole structure of the treated wood chips. However, damage to single wood fibers on the chips treated in NaOH-thiourea-urea aqueous solution was more obvious.

  • Researchpp 4826-4842Huang, R., Mei, Z., Long, Y., Xiong, X., Wang, J., Guo, T., Luo, T., and Long, E. (2015). "Impact of optimized flow pattern on pollutant removal and biogas production rate using wastewater anaerobic fermentation," BioRes. 10(3), 4826-4842.AbstractArticlePDF

    This paper introduces a new-type of antigravity mixing method, which was applied in the biogas production process, using organic wastewater fermentation. It was found that the digesters with two designs, a high-position, centralized pressure outlet and a high-position, dispersed pressure outlets, both lead to an increase in biogas production rates by 89% and 125%, respectively. The biogas production peak appeared 1 day and 7 days earlier, and the COD removal rates were raised by 27% and 42%, respectively. The results indicated that the optimized flow field had a significant impact. This work also explains the mechanism of flow field optimization using computational fluid dynamics (CFD) software for the simulation of the flow field form in the hydraulic mixing.

  • Researchpp 4843-4853Ni, J., Wen, Y., and Liu, H. (2015). "Preparation of micro-crystalline cellulose-reinforced polyacrylic acid hydrogel and its application in paper/polyacrylic acid composites," BioRes. 10(3), 4843-4853.AbstractArticlePDF

    Paper/polyacrylic acid (PAA) composites were prepared using a micro-crystalline cellulose (MCC)-reinforced PAA hydrogel. The MCC-reinforced PAA hydrogel was prepared by in-situ UV light-induced polymerization of acrylic acid in the presence of MCC. The experimental results showed that the presence of MCC improved the water absorption capacity of the resulting PAA hydrogel. The addition of 1 wt% MCC (based on the dry weight of acrylic acid) in the hydrogel matrix resulted in an increase in the water absorption capacity of the PAA hydrogel by 122 g water/g hydrogel (i.e., from 427 to 549 g/g). Paper/PAA composites were then made by surface loading of the MCC-reinforced PAA hydrogel fine particles. Using 2 g of MCC-reinforced PAA hydrogel particles per square meter of paper, the water absorbance of the paper/PAA composites reached 1096 g/m2. Potential applications of these paper/PAA composites are also discussed in this work.

@BioResJournal

54 years ago

Read More