Research Articles
Latest articles
- Researchpp 5812-5825Li, G., Sun, X., Lee, S., and Wu, Q. (2017). "Mechano-sorptive deformation of borate modified strand board for structural uses," BioRes. 12(3), 5812-5825.AbstractArticlePDF
Structural performance of chemically modified oriented strand board (OSB) has drawn great attention from builders, home insurance companies, and panel manufacturers. This study was conducted to provide time-dependent creep and moisture change-induced mechano-sorptive (MS) effect data from borate-treated and randomly formed strand board. The strand boards were lab-fabricated with flakes from southern yellow pine and mixed hardwoods. Commercial liquid phenol-formaldehyde resin was used as the binder. The treatments involved in the study were one level of zinc borate, one level of calcium borate, and two species groups that included separate controls. The load level, equivalent to 25% of the static bending modulus of rupture, was selected as a long-term constant load. Creep at 65% constant relative humidity (RH) developed in a normal time-dependent fashion and the Burger body creep model with four spring-dashpot elements was found appropriate to predict the creep response of borate modified strand board. Noticeable influence of borate modification on the fractional deflection was demonstrated under changing RH for both the absorption and desorption cycles. The measured fractional deflection due to the MS effect followed a linear relationship with moisture content change. The established material constants for various strand boards provided a way to predict the structural performance of treated strand board under varying RH conditions.
- Researchpp 5826-5837Luo, X., and Wang, X. (2017). "Preparation and characterization of nanocellulose fibers from NaOH/Urea pretreatment of oil palm fibers," BioRes. 12(3), 5826-5837.AbstractArticlePDF
A facile method is reported to prepare nanocellulose fibers from oil palm trunk fibers. The fibers were pretreated 2 hours with NaOH/urea solution, and the fully swelled fibers were mechanically treated through high-pressure homogenization to obtain nanocellulose. The nanocellulose fibers were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR results revealed that there was no obvious difference between the spectra of the bleached fibers (BF), pretreated cellulose fibers (PCF), and cellulose nanofibers (NCF), which indicated that the pretreatment process is a non-derivative reaction. The crystallinity of PCF and NCF decreased and contained the cellulose I crystal structure. The PCF presented both a distorted structure and a coarser surface. The resulting NCF were approximately 10 nm to 100 nm in diameter with the length varying from hundreds of nanometers to several micrometers, as observed by SEM. The thermal degradation of NCF was 223 °C with about 20% weight loss, and the maximum degradation temperature was 338 °C. NaOH/urea showed potential as a mild solvent for preparing nanocellulose fibers.
- Researchpp 5838-5850Lei, Y., Zhang, J., Chen, Z., Song, X., Huang, Z., and Xiao, J. (2017). "Mechanical properties of mulberry branch reconstituted square lumber," BioRes. 12(3), 5838-5850.AbstractArticlePDF
Reconstituted square lumber (RSL) was fabricated using mulberry branch as the raw material and polymeric diphenylmethane isocyanate (P-MDI) as the adhesive, and its mechanical properties were investigated. By using single factor and orthogonal experiments, the optimal parameters to produce RSL had 10% glue content, 160 °C hot-press temperature, and a 45 min hot-press time. The density distributions along with width, thickness, and length directions were scanned with DENSE-LAB X (density profile measuring system). Density was a significant factor that influenced the performances of mulberry branch RSL. The amount of glue also greatly affected the internal bond strength (IB), modulus of elasticity (MOE), modulus of rupture (MOR), and the 2-h thickness swelling rate of water absorption (TS2h) of RSL. Hot-press time affected the TS2h of RSL, but did not have a significant effect on the MOE, MOR, and IB of RSL. Hot-press temperature had an effect on the MOR of RSL, which significantly influenced the TS2h of RSL and slightly affected its MOE and IB. The density distribution of RSL was steep and flat in the width direction, steep in the thickness direction, and uniform in the length direction.
- Researchpp 5851-5866Du, J., Xiong, C., Luo, B., Sun, Y., Tang, X., Zeng, X., Lei, T., Liu, S., and Lin, L. (2017). "Active oxygen and solid alkali pretreatment of bamboo residue: Features of hemicellulose during the cooking process," BioRes. 12(3), 5851-5866.AbstractArticlePDF
Bamboo residue was treated with an active oxygen (O2) and solid alkali (MgO) (CAOSA) process, which was developed recently by the authors owing to its environmentally friendly and high-efficiency characteristics. During the cooking process, 93.0% of lignin and 62.1% of hemicellulose were removed from the raw material, which resulted in a cellulose-rich pulp. This indicated that this cooking process is efficient to fractionate the bamboo residue into cellulose, hemicellulose, and lignin as a pretreatment for biomass conversion. The structural features of the hemicellulose from the pretreated bamboo residue were analyzed for comparison with that of the raw materials. The molecular structure of the hemicellulose fractions obtained from both the raw bamboo and pulp consisted of a (1→4)-β-D-Xylp backbone substituted with α-L-Araf and 4-O-methyl-α-D-glucuronic acid. The hemicellulose with more side chains tended to be more easily removed from the bamboo cell wall during the CAOSA process. Furthermore, the fractions of hemicellulose exhibited much lower thermal stabilities after the cooking process than the raw material.
- Researchpp 5867-5877Bomba, J., Ježek, J., Hýsek, Š., Sikora, A., Stolariková, R., Palacká, A., Berková, M., and Kolbabová, T. (2017). "Polyurethane coatings on hardwood and softwood surfaces: Their resistance to household liquids as an educational case study," BioRes. 12(3), 5867-5877.AbstractArticlePDF
Effects of cold liquids on the cured film of selected coatings, the thickness of the final film coating on the resulting surface resistance, and different wood species on the resistance of the coating were investigated. It was demonstrated that different liquids affected the degradation of the cured film coating. The most aggressive liquid used was nail polish remover, followed by ethanol 40%, bleach, vinegar, and mouthwash. The least aggressive was dishwashing liquid. There was no evidence of a difference in the quality of the cured film coating applied on softwood and hardwood. The thickness of the coating had no statistically significant effect on the quality of the film. The liquids used for the tests are commonly used in households.
- Researchpp 5878-5895Jumaat, S. R., Tajuddin, S. N., Sudmoon, R., Chaveerach, A., Abdullah, U. H., and Mohamed, R. (2017). "Chemical constituents and toxicity screening of three aromatic plant species from peninsular Malaysia," BioRes. 12(3), 5878-5895.AbstractArticlePDF
Medicinal and aromatic plants (MAPs) are widely valued for their aromas, tastes, and treatments for various human illnesses. The chemical constituents and toxicity content of three aromatic plant species, Syzygium polyanthum Wight (Walp.), Monocarpia marginalis (Scheff.) J. Sinclair, and Chromolaena odorata (L.) R.M. King & H. Rob, were determined, via gas chromatography (GC) with mass spectrometry (MS), and flame ionization detector (FID). Altogether, 116 compounds were identified in the essential oils and hexane and methanol extracts. Toxicity evaluations were carried out on human peripheral blood mononuclear cells (PBMCs). Three plant samples were found toxic to human PBMCs. The essential oils of M. marginalis and C. odorata, and the hexane extract of C. odorata yielded IC50 and LD50 values of 76 mg/mL and 6,913 mg/kg, 14 mg/mL and 3,684 mg/kg, and 2.45 mg/mL and 1,927 mg/kg, respectively. Based on the LD50 values, M. marginalis and C. odorata can be classified as slightly and moderately hazardous, respectively. A detailed toxicity evaluation via comet assay showed that M. marginalis and C. odorata induced significant DNA damage (p < 0.05). As for S. polyanthum, the species did not give any cytotoxic or genotoxic evidences.
- Researchpp 5896-5912Moya, L., and Baño, V. (2017). "Elastic behavior of fast-growth Uruguayan pine determined from compression and bending tests," BioRes. 12(3), 5896-5912.AbstractArticlePDF
The design of engineered wood products and timber structures involving numerical simulations requires knowledge of the elastic and strength properties of wood. This study characterized the elastic behavior of Uruguayan pine wood (Pinus elliottii and P. taeda). A series of compression tests with the load applied with respect to various grain directions and bending tests were performed on small and clear specimens to determine the elastic constants and establish the relationships between the longitudinal moduli of elasticity obtained by the two testing methods. Moduli of elasticity, shear moduli, and Poisson ratios were determined. The longitudinal stiffness values in compression from the same specimen obtained by the two testing methods were similar. The moduli of elasticity in tension and compression parallel to the grain for the elastic behavior was obtained from experimental bending tests, and the downshift of the neutral axis until rupture was found. Using a model that simulates the post-elastic behavior as a curve comprised of several straight lines, the stress-strain diagram for tension and compression parallel to the grain was obtained.
- Researchpp 5913-5927Faydi, Y., Brancheriau, L., Pot, G., and Collet, R. (2017). "Prediction of oak wood mechanical properties based on the statistical exploitation of vibrational response," BioRes. 12(3), 5913-5927.AbstractArticlePDF
In the European Union, timber is used in structural applications and must be graded with a Conformité Européene (CE) mark. To achieve standard, machine strength grading is used. A common technology for these machines is based on using the vibrational response of each wood board to estimate the timber modulus of elasticity and modulus of rupture. The first Eigen frequency is usually used to predict these mechanical properties. However, in heterogeneous wood species such as oak, this parameter is less correlated with mechanical properties. The current study proposes two new methods based on an extended exploitation of the vibrational response that predicts oak wood mechanical properties. The first method was based on the mechanical parameters deduced from several Eigen frequencies that were chosen with regards to a stepwise regression. The second method was based on the full vibrational spectrum and used a partial least squares method. The first method slightly improved the prediction of the modulus of elasticity compared with the first Eigen frequency in edgewise transversal vibration. Both methods significantly improved the prediction of the modulus of rupture.
- Researchpp 5928-5941Chen, J., Zhang, L., Yang, G., Wang, Q., Li, R., and Lucia, L. A. (2017). "Preparation and characterization of activated carbon from hydrochar by phosphoric acid activation and its adsorption performance in prehydrolysis liquor," BioRes. 12(3), 5928-5941.AbstractArticlePDF
Hydrochar was used to produce activated carbon with high BET surface area and large pore volume via phosphoric acid activation. The hydrochar described here can be obtained from hydrothermal carbonization of corn cob residue (CCR). Porous structure of activated carbons was characterized by nitrogen adsorption and scanning electron microscopy (SEM). Results showed that the specific surface area and total pore volume of activated carbon were increased to 2192 m2/g and 1.269 cm3/g, respectively, under conditions of 400 °C, 1 h, and an impregnation ratio of 3, from 5.69 m2/g and 0.136 cm3/g of the starting material. The chemical properties of hydrochar and activated carbons were further characterized by Fourier transform infrared spectroscopy (FT-IR), which confirmed the chemical transformation. Furthermore, the localized graphitic nature of the porous carbon was shown by the X-ray diffraction pattern. Thus, the adsorption capacity was enhanced for activated carbon in comparison with commercial carbon. The process of activated carbon preparation provided a high value-added application of hydrochar.
- Researchpp 5942-5952Andac, T., and Güzel, A. (2017). "Attitudes of families with children towards eco-friendly designed furniture: Kayseri sample," BioRes. 12(3), 5942-5952.AbstractArticlePDF
Eco-friendly products have played an important role across all aspects of human life. A wide range of eco-friendly furniture is in use. One of the purposes of this study is to investigate the general perspectives of parents from different demographic origins in terms of eco-friendly design and their tendency towards eco-friendly furniture. Another purpose is to examine the source of consciousness that has led to purchase and use of eco-friendly furniture in terms of parental influence. The data collected in this study were obtained through a questionnaire conducted at an independent furniture store in Kayseri. The hypotheses employed during the research were subjected to ANOVA testing and evaluated graphically with descriptive statistical methods. As a result of the questionnaire, it was detected that parents have an awareness of ecology. They are inclined to prefer furniture that is not harmful for health and environment. Especially, parents with a higher level of income tend to have a higher level of inclination. According to the analyses, despite the existence of eco-friendly furniture in the market, they are not widely preferred by parents due to high prices.